Dual-branch hybrid encoding embedded network for histopathology image classification

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 数据挖掘 稳健性(进化) 特征提取 机器学习 生物化学 化学 基因
作者
Mingshuai Li,Zhiqiu Hu,Song Qiu,Chenhao Zhou,Jialei Weng,Qiongzhu Dong,Xia Sheng,Ning Ren,Mei Zhou
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (19): 195002-195002 被引量:3
标识
DOI:10.1088/1361-6560/acf556
摘要

Objective.Learning-based histopathology image (HI) classification methods serve as important tools for auxiliary diagnosis in the prognosis stage. However, most existing methods are focus on a single target cancer due to inter-domain differences among different cancer types, limiting their applicability to different cancer types. To overcome these limitations, this paper presents a high-performance HI classification method that aims to address inter-domain differences and provide an improved solution for reliable and practical HI classification.Approach.Firstly, we collect a high-quality hepatocellular carcinoma (HCC) dataset with enough data to verify the stability and practicability of the method. Secondly, a novel dual-branch hybrid encoding embedded network is proposed, which integrates the feature extraction capabilities of convolutional neural network and Transformer. This well-designed structure enables the network to extract diverse features while minimizing redundancy from a single complex network. Lastly, we develop a salient area constraint loss function tailored to the unique characteristics of HIs to address inter-domain differences and enhance the robustness and universality of the methods.Main results.Extensive experiments have conducted on the proposed HCC dataset and two other publicly available datasets. The proposed method demonstrates outstanding performance with an impressive accuracy of 99.09% on the HCC dataset and achieves state-of-the-art results on the other two public datasets. These remarkable outcomes underscore the superior performance and versatility of our approach in multiple HI classification.Significance.The advancements presented in this study contribute to the field of HI analysis by providing a reliable and practical solution for multiple cancer classification, potentially improving diagnostic accuracy and patient outcomes. Our code is available athttps://github.com/lms-design/DHEE-net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助zhui采纳,获得10
1秒前
web123完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
热情醉山发布了新的文献求助30
5秒前
Tinsulfides完成签到,获得积分10
8秒前
9秒前
猪猪hero应助甜美帅哥采纳,获得10
11秒前
阿托品完成签到,获得积分10
11秒前
12秒前
13秒前
高贵路灯完成签到,获得积分10
13秒前
mumu发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
18秒前
好好完成签到,获得积分10
18秒前
19秒前
Youtenter完成签到,获得积分10
19秒前
热情醉山完成签到,获得积分10
20秒前
Akim应助取个名儿吧采纳,获得10
20秒前
猪猪hero应助耍酷的梦桃采纳,获得10
20秒前
热情思天发布了新的文献求助30
21秒前
22秒前
蓝莲完成签到,获得积分10
22秒前
23秒前
Night完成签到,获得积分10
24秒前
宫城百事顺完成签到,获得积分10
24秒前
高高梦松完成签到,获得积分10
26秒前
周奕迅发布了新的文献求助10
26秒前
沉静代芹发布了新的文献求助10
28秒前
英姑应助科研顺利采纳,获得10
29秒前
自然的苗条完成签到,获得积分10
29秒前
pentjy完成签到,获得积分10
30秒前
充电宝应助PeterParker采纳,获得10
31秒前
31秒前
好心情发布了新的文献求助100
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565528
求助须知:如何正确求助?哪些是违规求助? 3138490
关于积分的说明 9426917
捐赠科研通 2838955
什么是DOI,文献DOI怎么找? 1560600
邀请新用户注册赠送积分活动 729739
科研通“疑难数据库(出版商)”最低求助积分说明 717597