A 3D modelling study on all vanadium redox flow battery at various operating temperatures

流动电池 多孔性 电极 材料科学 电解质 体积流量 分析化学(期刊) 氧化还原 电池(电) 工作温度 复合材料 化学 冶金 热力学 色谱法 功率(物理) 物理 物理化学
作者
Qijiao He,Zheng Li,Dongqi Zhao,Jie Yu,Peng Tan,Meiting Guo,Tianjun Liao,Tianshou Zhao,Meng Ni
出处
期刊:Energy [Elsevier BV]
卷期号:282: 128934-128934 被引量:19
标识
DOI:10.1016/j.energy.2023.128934
摘要

To understand whether the optimization of the operating/electrode structural parameters are temperature dependent, a 3D numerical model is developed and validated to gain insight into the impact of practical operating temperature (273.15 K–323.15 K) on vanadium redox flow battery (VRFB) performance, in which the property parameters are from published experimental data. The operating temperature is found significantly influence the optimal design of VRFBs. Increasing the inlet flow rate and state of charge (SOC), decreasing the electrode porosity and fibre diameter can all improve the battery performance with interdigitated flow channels, and the improvement increases with increasing temperature. In contrast, decreasing the fibre diameter or porosity increases the flow resistance and costs higher pump consumption, which is more pronounced at a lower temperature due to higher electrolyte viscosity. The effect of electrode thickness is also different at various temperatures. The gradient porosity electrode is applied in VRFB with interdigitated flow channels. The electrochemical performance of VRFB with gradient electrode (porosity increases from 0.8 at channel side to 0.93 at membrane side) performs similarly with the VRFB with 0.8 porosity electrode, while the pressure drop is reduced by 40% at all temperature. This model provides a deep understanding of effects of a wide range of working temperature on the optimization of operating/electrode parameters and on the VRFBs' performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落雪发布了新的文献求助20
刚刚
Jasmych完成签到,获得积分10
刚刚
蜜桃乌龙茶完成签到,获得积分10
2秒前
2秒前
踏实水池应助科研通管家采纳,获得20
3秒前
喵典娜完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Tourist应助科研通管家采纳,获得150
3秒前
新年快乐完成签到,获得积分10
3秒前
tuanheqi应助科研通管家采纳,获得150
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得20
3秒前
LaTeXer应助科研通管家采纳,获得150
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
ne完成签到 ,获得积分10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
范雅寒发布了新的文献求助10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
腼腆的半莲完成签到,获得积分10
4秒前
4秒前
asdlxz发布了新的文献求助10
6秒前
6秒前
冷静尔芙完成签到,获得积分10
7秒前
zj3tears发布了新的文献求助10
8秒前
momi完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
孟孟完成签到,获得积分10
9秒前
anny.white完成签到,获得积分10
9秒前
9秒前
慎独完成签到,获得积分10
10秒前
英姑应助尾巴采纳,获得10
10秒前
Lucas应助加缪采纳,获得30
10秒前
Lucas完成签到,获得积分10
11秒前
Huanghong发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082371
求助须知:如何正确求助?哪些是违规求助? 4299730
关于积分的说明 13396998
捐赠科研通 4123608
什么是DOI,文献DOI怎么找? 2258463
邀请新用户注册赠送积分活动 1262720
关于科研通互助平台的介绍 1196681