Spatiotemporal Variations of Global Terrestrial Typical Vegetation EVI and Their Responses to Climate Change from 2000 to 2021

冻土带 灌木丛 环境科学 气候变化 植被(病理学) 气候学 全球变暖 草原 全球变化 降水 生态系统 陆地生态系统 自然地理学 生态学 地理 气象学 医学 生物 地质学 病理
作者
Chenhao Li,Yifan Song,Tianling Qin,Denghua Yan,Xin Zhang,Lin Zhu,Batsuren Dorjsuren,Hira Khalid
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (17): 4245-4245 被引量:3
标识
DOI:10.3390/rs15174245
摘要

With the increasing impact of climate change on ecosystems, it is crucial to analyze how changes in precipitation and temperature affect global ecosystems. Therefore, this study aims to investigate the spatiotemporal variation characteristics of the Enhanced Vegetation Index (EVI) in the global forest, grassland, shrubland, and tundra (FGST) from 2000 to 2021. We utilized partial correlation analysis and grey relation analysis to assess the responses of different vegetation types to precipitation, temperature, and extreme water and heat indicators. The result shows that, despite a “warmer and drier” trend in FGST (excluding tundra), global climate change has not adversely affected the ongoing vegetation growth. It presents a favorable implication for global carbon dioxide assimilation. Different vegetation types displayed different sensitivities to changes in precipitation and temperature. Shrubland proved to be the most sensitive, followed by grassland, forest, and tundra. As the impacts of global climate change intensify, it becomes crucial to direct our attention toward dynamics of vegetation types demonstrating heightened sensitivity to fluctuations in precipitation and temperature. Our study indicates that, except for forests, extreme precipitation indicators have a stronger impact on EVI than extreme temperature indicators. Forests and tundra have demonstrated heightened susceptibility to the intensity of extreme climatic events, while grasslands and shrublands have been more sensitive to the duration of such events. Understanding these responses can offer valuable insights for developing targeted strategies for adaptation and preservation. Our study enhances comprehension of the feedback relationship between global climate change and vegetation, offering scientific evidence for global climate change evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈漂亮发布了新的文献求助30
1秒前
Lum发布了新的文献求助10
1秒前
乐乐应助回鱼采纳,获得10
1秒前
Bio应助科研通管家采纳,获得40
1秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
Orange应助科研通管家采纳,获得20
2秒前
2秒前
123完成签到,获得积分10
2秒前
Mr.F应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
欧阳振应助科研通管家采纳,获得10
2秒前
科奇应助科研通管家采纳,获得20
3秒前
大模型应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
shinysparrow应助科研通管家采纳,获得100
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
好运好运发布了新的文献求助10
4秒前
4秒前
下酒菜完成签到 ,获得积分10
4秒前
科研通AI2S应助现代玉米采纳,获得10
4秒前
4秒前
KevinT完成签到,获得积分10
5秒前
5秒前
6秒前
9秒前
wait发布了新的文献求助10
9秒前
沉潜完成签到,获得积分10
9秒前
斯文败类应助小灰灰采纳,获得10
9秒前
Akim应助会笑的光采纳,获得10
9秒前
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113