Spatiotemporal Variations of Global Terrestrial Typical Vegetation EVI and Their Responses to Climate Change from 2000 to 2021

冻土带 灌木丛 环境科学 气候变化 植被(病理学) 气候学 全球变暖 草原 全球变化 降水 生态系统 陆地生态系统 自然地理学 生态学 地理 气象学 医学 病理 生物 地质学
作者
Chenhao Li,Yifan Song,Tianling Qin,Denghua Yan,Xin Zhang,Lin Zhu,Batsuren Dorjsuren,Hira Khalid
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (17): 4245-4245 被引量:3
标识
DOI:10.3390/rs15174245
摘要

With the increasing impact of climate change on ecosystems, it is crucial to analyze how changes in precipitation and temperature affect global ecosystems. Therefore, this study aims to investigate the spatiotemporal variation characteristics of the Enhanced Vegetation Index (EVI) in the global forest, grassland, shrubland, and tundra (FGST) from 2000 to 2021. We utilized partial correlation analysis and grey relation analysis to assess the responses of different vegetation types to precipitation, temperature, and extreme water and heat indicators. The result shows that, despite a “warmer and drier” trend in FGST (excluding tundra), global climate change has not adversely affected the ongoing vegetation growth. It presents a favorable implication for global carbon dioxide assimilation. Different vegetation types displayed different sensitivities to changes in precipitation and temperature. Shrubland proved to be the most sensitive, followed by grassland, forest, and tundra. As the impacts of global climate change intensify, it becomes crucial to direct our attention toward dynamics of vegetation types demonstrating heightened sensitivity to fluctuations in precipitation and temperature. Our study indicates that, except for forests, extreme precipitation indicators have a stronger impact on EVI than extreme temperature indicators. Forests and tundra have demonstrated heightened susceptibility to the intensity of extreme climatic events, while grasslands and shrublands have been more sensitive to the duration of such events. Understanding these responses can offer valuable insights for developing targeted strategies for adaptation and preservation. Our study enhances comprehension of the feedback relationship between global climate change and vegetation, offering scientific evidence for global climate change evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的镜子应助dingning采纳,获得20
1秒前
2秒前
完美世界应助迷路以筠采纳,获得10
5秒前
momo完成签到,获得积分10
6秒前
6秒前
lewis发布了新的文献求助10
7秒前
浪迹天涯应助求助采纳,获得10
7秒前
六月发布了新的文献求助10
7秒前
乌梅不乌发布了新的文献求助10
7秒前
八二力完成签到 ,获得积分10
7秒前
7秒前
12秒前
一夜很静应助迷人素采纳,获得10
13秒前
13秒前
耍酷的夏云应助SV采纳,获得10
15秒前
六月完成签到,获得积分10
19秒前
Anquan发布了新的文献求助10
19秒前
善学以致用应助好难啊采纳,获得10
19秒前
悦耳觅荷发布了新的文献求助10
20秒前
20秒前
21秒前
十七完成签到 ,获得积分10
21秒前
21秒前
ccerr完成签到,获得积分10
22秒前
22秒前
乌梅不乌完成签到,获得积分10
22秒前
22秒前
和谐的寄凡完成签到,获得积分10
23秒前
Millennial发布了新的文献求助10
24秒前
诸笑白发布了新的文献求助10
24秒前
车秋寒发布了新的文献求助10
24秒前
25秒前
我是老大应助张学友采纳,获得30
28秒前
xiangxiang发布了新的文献求助10
28秒前
28秒前
想在海边种花完成签到,获得积分10
29秒前
无限的雨梅完成签到 ,获得积分10
29秒前
29秒前
材料打工人完成签到 ,获得积分10
30秒前
甜甜忆山完成签到,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851