亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-Driven Deep Learning Neural Networks for Predicting the Number of Individuals Infected by COVID-19 Omicron Variant

2019年冠状病毒病(COVID-19) 常量(计算机编程) 功能(生物学) 计算机科学 逻辑函数 人工神经网络 人工智能 流行病模型 传染病(医学专业) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 机器学习 疾病 医学 生物 人口 环境卫生 病理 进化生物学 程序设计语言
作者
Ebenezer O. Oluwasakin,A.Q.M. Khaliq
出处
期刊:Epidemiologia [MDPI AG]
卷期号:4 (4): 420-453 被引量:5
标识
DOI:10.3390/epidemiologia4040037
摘要

Infectious disease epidemics are challenging for medical and public health practitioners. They require prompt treatment, but it is challenging to recognize and define epidemics in real time. Knowing the prediction of an infectious disease epidemic can evaluate and prevent the disease’s impact. Mathematical models of epidemics that work in real time are important tools for preventing disease, and data-driven deep learning enables practical algorithms for identifying parameters in mathematical models. In this paper, the SIR model was reduced to a logistic differential equation involving a constant parameter and a time-dependent function. The time-dependent function leads to constant, rational, and birational models. These models use several constant parameters from the available data to predict the time and number of people reported to be infected with the COVID-19 Omicron variant. Two out of these three models, rational and birational, provide accurate predictions for countries that practice strict mitigation measures, but fail to provide accurate predictions for countries that practice partial mitigation measures. Therefore, we introduce a time-series model based on neural networks to predict the time and number of people reported to be infected with the COVID-19 Omicron variant in a given country that practices both partial and strict mitigation measures. A logistics-informed neural network algorithm was also introduced. This algorithm takes as input the daily and cumulative number of people who are reported to be infected with the COVID-19 Omicron variant in the given country. The algorithm helps determine the analytical solution involving several constant parameters for each model from the available data. The accuracy of these models is demonstrated using error metrics on Omicron variant data for Portugal, Italy, and China. Our findings demonstrate that the constant model could not accurately predict the daily or cumulative infections of the COVID-19 Omicron variant in the observed country because of the long series of existing data of the epidemics. However, the rational and birational models accurately predicted cumulative infections in countries adopting strict mitigation measures, but they fell short in predicting the daily infections. Furthermore, both models performed poorly in countries with partial mitigation measures. Notably, the time-series model stood out for its versatility, effectively predicting both daily and cumulative infections in countries irrespective of the stringency of their mitigation measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研废人发布了新的文献求助10
2秒前
诚心的信封完成签到 ,获得积分10
10秒前
27秒前
44秒前
77发布了新的文献求助10
47秒前
1分钟前
1分钟前
Babyblue发布了新的文献求助10
1分钟前
Hello应助Babyblue采纳,获得10
1分钟前
1分钟前
1分钟前
sisyphus发布了新的文献求助10
2分钟前
上官若男应助TYmtdjbYDD采纳,获得10
2分钟前
Timo干物类完成签到,获得积分10
2分钟前
pin完成签到 ,获得积分10
3分钟前
李爱国应助wpj采纳,获得10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
qrwyqjbsd应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
茶茶完成签到,获得积分10
4分钟前
4分钟前
4分钟前
AM发布了新的文献求助10
5分钟前
qrwyqjbsd应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
ling361完成签到,获得积分10
5分钟前
铭铭铭发布了新的文献求助10
6分钟前
6分钟前
6分钟前
淡定幼荷发布了新的文献求助10
6分钟前
淡定幼荷完成签到,获得积分10
6分钟前
6分钟前
benbenca发布了新的文献求助20
6分钟前
7分钟前
liudy发布了新的文献求助10
7分钟前
孔wj发布了新的文献求助10
7分钟前
7分钟前
孔wj完成签到,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067253
捐赠科研通 2750111
什么是DOI,文献DOI怎么找? 1509008
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896