Decoupled Consistency for Semi-supervised Medical Image Segmentation

计算机科学 正规化(语言学) 一致性(知识库) 分割 像素 人工智能 标记数据 数据一致性 模式识别(心理学) 数据挖掘 图像分割 机器学习 操作系统
作者
Faquan Chen,Jingjing Fei,Yaqi Chen,Chenxi Huang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 551-561 被引量:7
标识
DOI:10.1007/978-3-031-43907-0_53
摘要

By fully utilizing unlabeled data, the semi-supervised learning (SSL) technique has recently produced promising results in the segmentation of medical images. Pseudo labeling and consistency regularization are two effective strategies for using unlabeled data. Yet, the traditional pseudo labeling method will filter out low-confidence pixels. The advantages of both high- and low-confidence data are not fully exploited by consistency regularization. Therefore, neither of these two methods can make full use of unlabeled data. We proposed a novel decoupled consistency semi-supervised medical image segmentation framework. First, the dynamic threshold is utilized to decouple the prediction data into consistent and inconsistent parts. For the consistent part, we use the method of cross pseudo supervision to optimize it. For the inconsistent part, we further decouple it into unreliable data that is likely to occur close to the decision boundary and guidance data that is more likely to emerge near the high-density area. Unreliable data will be optimized in the direction of guidance data. We refer to this action as directional consistency. Furthermore, in order to fully utilize the data, we incorporate feature maps into the training process and calculate the loss of feature consistency. A significant number of experiments have demonstrated the superiority of our proposed method. The code is available at https://github.com/wxfaaaaa/DCNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzxxxx发布了新的文献求助10
刚刚
斯文败类应助勤劳傲晴采纳,获得10
1秒前
shilong.yang发布了新的文献求助10
1秒前
momo完成签到,获得积分10
2秒前
wxp_bioinfo完成签到,获得积分10
3秒前
3秒前
桐桐应助wangg采纳,获得10
3秒前
Jun完成签到,获得积分10
4秒前
芝士的酒发布了新的文献求助50
4秒前
5秒前
赘婿应助复杂的问玉采纳,获得30
5秒前
6秒前
6秒前
7秒前
端庄白开水完成签到,获得积分10
7秒前
吕春雨发布了新的文献求助10
7秒前
大个应助wxp_bioinfo采纳,获得10
8秒前
yqq完成签到 ,获得积分10
8秒前
9秒前
10秒前
芝士发布了新的文献求助10
10秒前
橘子发布了新的文献求助10
11秒前
11秒前
11秒前
晨曦发布了新的文献求助10
12秒前
12秒前
kobiy完成签到 ,获得积分10
12秒前
wu完成签到 ,获得积分10
13秒前
蛋泥完成签到,获得积分10
13秒前
顾矜应助mingjie采纳,获得10
14秒前
zhaowenxian发布了新的文献求助10
14秒前
勤劳傲晴发布了新的文献求助10
15秒前
15秒前
橘子完成签到,获得积分10
17秒前
可耐的从安完成签到 ,获得积分10
18秒前
zho应助背后的诺言采纳,获得10
18秒前
粥粥完成签到,获得积分10
18秒前
19秒前
打打应助陈杰采纳,获得10
20秒前
充电宝应助柔弱凡松采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794