重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Managing non-cooperative behaviors and ordinal consensus through a self-organized mechanism in multi-attribute group decision making

计算机科学 群体决策 排名(信息检索) 偏爱 过程(计算) 质量(理念) 选择(遗传算法) 运筹学 数据挖掘 人工智能 微观经济学 数学 心理学 社会心理学 经济 哲学 认识论 操作系统
作者
Sihai Zhao,Siqi Wu,Yucheng Dong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122571-122571 被引量:6
标识
DOI:10.1016/j.eswa.2023.122571
摘要

In consensus-based multi-attribute group decision making (MAGDM) problems, decision makers (DMs) may exhibit non-cooperative behaviors since they usually have different individual interests (sometimes conflicting) or limited knowledge, which strongly affects the efficiency of consensus and the quality of decision outcomes. Additionally, the existing MAGDM studies mainly focus on the cardinal consensus, and the ordinal consensus is ignored. Thus, this paper proposes a self-organized mechanism based framework to manage non-cooperative behaviors and ordinal consensus in MAGDM. First, a dual-membership function based on the basic idea of synergy theory is designed to detect non-cooperative behaviors at the element level of the multiple attribute evaluation matrix (MAEM), and then the weights of elements with non-cooperative behaviors are penalized automatically. In this way, the negative effects of non-cooperative behaviors can be eliminated. Next, a novel preference ranking-based ordinal consensus approach is proposed, which calculates an ordinal consensus based on the preference rankings of alternatives between individuals and the group. If the pre-defined consensus level is not reached, the feedback adjustment is used to help DMs modify their MAEMs to improve the consensus level; otherwise, the selection process is utilized to choose the optimal alternative(s). Finally, detailed simulation experiments and comparative analysis are designed to show the properties and effectiveness of the proposed framework, and an illustrative angel investment case is presented to demonstrate the calculation process and usability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助小小旭呀采纳,获得10
刚刚
浮游应助缓慢海亦采纳,获得10
1秒前
1秒前
清秀豆芽发布了新的文献求助10
1秒前
刘老板发布了新的文献求助10
1秒前
1秒前
清秀豆芽发布了新的文献求助10
1秒前
1秒前
深情安青应助LiuZheng采纳,获得10
2秒前
2秒前
Joker完成签到,获得积分10
2秒前
周周周发布了新的文献求助10
2秒前
2秒前
Flex完成签到,获得积分10
3秒前
Soleven发布了新的文献求助10
3秒前
3秒前
3秒前
科目三应助咕噜采纳,获得10
3秒前
mingjing发布了新的文献求助10
3秒前
炸骐发布了新的文献求助10
4秒前
4秒前
zy完成签到,获得积分10
5秒前
冯珂完成签到 ,获得积分10
5秒前
5秒前
小鹿5460发布了新的文献求助10
5秒前
luo完成签到,获得积分10
5秒前
顾矜应助无隅采纳,获得10
6秒前
美丽佩奇完成签到 ,获得积分10
7秒前
贺六浑发布了新的文献求助30
7秒前
尧肙完成签到,获得积分20
7秒前
季忆发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
上官若男应助坦率灵槐采纳,获得10
9秒前
9秒前
wanghao4799发布了新的文献求助10
9秒前
10秒前
yuzu完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466510
求助须知:如何正确求助?哪些是违规求助? 4570363
关于积分的说明 14324919
捐赠科研通 4496890
什么是DOI,文献DOI怎么找? 2463583
邀请新用户注册赠送积分活动 1452557
关于科研通互助平台的介绍 1427545