Managing non-cooperative behaviors and ordinal consensus through a self-organized mechanism in multi-attribute group decision making

计算机科学 群体决策 排名(信息检索) 偏爱 过程(计算) 质量(理念) 选择(遗传算法) 运筹学 数据挖掘 人工智能 微观经济学 数学 心理学 社会心理学 经济 认识论 操作系统 哲学
作者
Sihai Zhao,Siqi Wu,Yucheng Dong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122571-122571 被引量:6
标识
DOI:10.1016/j.eswa.2023.122571
摘要

In consensus-based multi-attribute group decision making (MAGDM) problems, decision makers (DMs) may exhibit non-cooperative behaviors since they usually have different individual interests (sometimes conflicting) or limited knowledge, which strongly affects the efficiency of consensus and the quality of decision outcomes. Additionally, the existing MAGDM studies mainly focus on the cardinal consensus, and the ordinal consensus is ignored. Thus, this paper proposes a self-organized mechanism based framework to manage non-cooperative behaviors and ordinal consensus in MAGDM. First, a dual-membership function based on the basic idea of synergy theory is designed to detect non-cooperative behaviors at the element level of the multiple attribute evaluation matrix (MAEM), and then the weights of elements with non-cooperative behaviors are penalized automatically. In this way, the negative effects of non-cooperative behaviors can be eliminated. Next, a novel preference ranking-based ordinal consensus approach is proposed, which calculates an ordinal consensus based on the preference rankings of alternatives between individuals and the group. If the pre-defined consensus level is not reached, the feedback adjustment is used to help DMs modify their MAEMs to improve the consensus level; otherwise, the selection process is utilized to choose the optimal alternative(s). Finally, detailed simulation experiments and comparative analysis are designed to show the properties and effectiveness of the proposed framework, and an illustrative angel investment case is presented to demonstrate the calculation process and usability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_842M4n发布了新的文献求助10
1秒前
1秒前
winteryoung完成签到,获得积分10
3秒前
3秒前
Quinn完成签到 ,获得积分10
5秒前
6秒前
6秒前
Orange应助激情的一斩采纳,获得10
6秒前
徐徐徐应助左友铭采纳,获得10
7秒前
Lin完成签到,获得积分10
7秒前
研友_842M4n完成签到,获得积分10
7秒前
不爱胡椒发布了新的文献求助20
7秒前
科研通AI2S应助Hey采纳,获得10
7秒前
Zll完成签到,获得积分10
8秒前
小巧问柳完成签到,获得积分10
8秒前
乾坤发布了新的文献求助10
10秒前
香蕉觅云应助瘦瘦的冬天采纳,获得10
10秒前
搜集达人应助活力的果汁采纳,获得10
10秒前
11秒前
蜡笔小鱼完成签到,获得积分10
11秒前
11秒前
神勇冰岚发布了新的文献求助10
12秒前
共享精神应助zydxyx采纳,获得10
12秒前
13秒前
科研通AI2S应助激动的士萧采纳,获得10
13秒前
Akim应助激动的士萧采纳,获得10
13秒前
ErlanYang完成签到,获得积分10
13秒前
夏晴发布了新的文献求助10
13秒前
友好寻琴完成签到 ,获得积分10
14秒前
14秒前
WYR完成签到 ,获得积分10
14秒前
纪鹏飞发布了新的文献求助10
15秒前
健壮聪展完成签到,获得积分10
15秒前
研友_VZG7GZ应助天地侵略者采纳,获得10
15秒前
果果发布了新的文献求助10
16秒前
田一点发布了新的文献求助10
16秒前
16秒前
17秒前
米莉发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799502
关于积分的说明 7835226
捐赠科研通 2456813
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628189
版权声明 601655