Managing non-cooperative behaviors and ordinal consensus through a self-organized mechanism in multi-attribute group decision making

计算机科学 群体决策 排名(信息检索) 偏爱 过程(计算) 质量(理念) 选择(遗传算法) 运筹学 数据挖掘 人工智能 微观经济学 数学 心理学 社会心理学 经济 认识论 操作系统 哲学
作者
Sihai Zhao,Siqi Wu,Yucheng Dong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122571-122571 被引量:6
标识
DOI:10.1016/j.eswa.2023.122571
摘要

In consensus-based multi-attribute group decision making (MAGDM) problems, decision makers (DMs) may exhibit non-cooperative behaviors since they usually have different individual interests (sometimes conflicting) or limited knowledge, which strongly affects the efficiency of consensus and the quality of decision outcomes. Additionally, the existing MAGDM studies mainly focus on the cardinal consensus, and the ordinal consensus is ignored. Thus, this paper proposes a self-organized mechanism based framework to manage non-cooperative behaviors and ordinal consensus in MAGDM. First, a dual-membership function based on the basic idea of synergy theory is designed to detect non-cooperative behaviors at the element level of the multiple attribute evaluation matrix (MAEM), and then the weights of elements with non-cooperative behaviors are penalized automatically. In this way, the negative effects of non-cooperative behaviors can be eliminated. Next, a novel preference ranking-based ordinal consensus approach is proposed, which calculates an ordinal consensus based on the preference rankings of alternatives between individuals and the group. If the pre-defined consensus level is not reached, the feedback adjustment is used to help DMs modify their MAEMs to improve the consensus level; otherwise, the selection process is utilized to choose the optimal alternative(s). Finally, detailed simulation experiments and comparative analysis are designed to show the properties and effectiveness of the proposed framework, and an illustrative angel investment case is presented to demonstrate the calculation process and usability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QY完成签到,获得积分10
刚刚
Sylvia卉完成签到,获得积分10
1秒前
ccccccc完成签到,获得积分10
1秒前
zhoushishan发布了新的文献求助10
2秒前
如意的尔冬完成签到,获得积分10
2秒前
2秒前
福尔丘发布了新的文献求助10
3秒前
han完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
tjy发布了新的文献求助10
4秒前
5秒前
6秒前
tansl1989发布了新的文献求助10
6秒前
哈哈发布了新的文献求助10
7秒前
ava完成签到,获得积分10
7秒前
7秒前
132324完成签到,获得积分10
8秒前
任_完成签到,获得积分10
8秒前
小董继续努力完成签到,获得积分10
8秒前
养鸟的人完成签到,获得积分10
8秒前
淼队发布了新的文献求助20
11秒前
11秒前
科研通AI5应助任_采纳,获得30
12秒前
焦函发布了新的文献求助10
12秒前
zhoushishan完成签到,获得积分10
13秒前
云墨完成签到,获得积分10
14秒前
俊秀的念烟完成签到,获得积分10
14秒前
科研通AI6应助研友_nqBP4Z采纳,获得10
17秒前
18秒前
tianyue完成签到,获得积分10
19秒前
chenpitang关注了科研通微信公众号
19秒前
20秒前
woxiangbiye发布了新的文献求助10
21秒前
发嗲的冬灵完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
wop111应助cssfsa采纳,获得50
23秒前
23秒前
小马甲应助唯手熟尔采纳,获得10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124448
求助须知:如何正确求助?哪些是违规求助? 4328721
关于积分的说明 13488255
捐赠科研通 4163099
什么是DOI,文献DOI怎么找? 2282182
邀请新用户注册赠送积分活动 1283377
关于科研通互助平台的介绍 1222607