Multi-task contrastive learning for semi-supervised medical image segmentation with multi-scale uncertainty estimation

计算机科学 分割 人工智能 任务(项目管理) 编码器 班级(哲学) 模式识别(心理学) 噪音(视频) 机器学习 图像分割 一致性(知识库) 比例(比率) 编码(集合论) 尺度空间分割 图像(数学) 物理 管理 集合(抽象数据类型) 量子力学 经济 程序设计语言 操作系统
作者
Chengcheng Xing,Haoji Dong,Heran Xi,Jiquan Ma,Jinghua Zhu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185006-185006 被引量:1
标识
DOI:10.1088/1361-6560/acf10f
摘要

Abstract Objective . Automated medical image segmentation is vital for the prevention and treatment of disease. However, medical data commonly exhibit class imbalance in practical applications, which may lead to unclear boundaries of specific classes and make it difficult to effectively segment certain tail classes in the results of semi-supervised medical image segmentation. Approach . We propose a novel multi-task contrastive learning framework for semi-supervised medical image segmentation with multi-scale uncertainty estimation. Specifically, the framework includes a student-teacher model. We introduce global image-level contrastive learning in the encoder to address the class imbalance and local pixel-level contrastive learning in the decoder to achieve intra-class aggregation and inter-class separation. Furthermore, we propose a multi-scale uncertainty-aware consistency loss to reduce noise caused by pseudo-label bias. Main results . Experiments on three public datasets ACDC, LA and LiTs show that our method achieves higher segmentation performance compared with state-of-the-art semi-supervised segmentation methods. Significance . The multi-task contrastive learning in our method facilitates the negative impact of class imbalance and achieves better classification results. The multi-scale uncertainty estimation encourages consistent predictions for the same input under different perturbations, motivating the teacher model to generate high-quality pseudo-labels. Code is available at https://github.com/msctransu/MCSSMU.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凤迎雪飘完成签到,获得积分10
刚刚
刚刚
钊子发布了新的文献求助10
1秒前
丘比特应助miao采纳,获得10
1秒前
1秒前
2秒前
kls发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
shenwei完成签到,获得积分10
4秒前
4秒前
99完成签到,获得积分10
4秒前
Orange应助kls采纳,获得10
5秒前
科研通AI6应助凉凉盛夏采纳,获得10
5秒前
婷婷完成签到,获得积分10
5秒前
wary发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
专一的书雪完成签到,获得积分10
8秒前
8秒前
8秒前
qing发布了新的文献求助10
9秒前
Areeha发布了新的文献求助10
9秒前
9秒前
尊敬的盼山关注了科研通微信公众号
9秒前
mx发布了新的文献求助10
10秒前
10秒前
11秒前
simin完成签到 ,获得积分10
11秒前
酷酷百川完成签到,获得积分20
11秒前
12秒前
午木发布了新的文献求助10
12秒前
ping完成签到 ,获得积分10
12秒前
12秒前
赵赵完成签到 ,获得积分10
12秒前
re完成签到 ,获得积分10
13秒前
住在魔仙堡的鱼完成签到 ,获得积分10
13秒前
添添发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427790
求助须知:如何正确求助?哪些是违规求助? 4541692
关于积分的说明 14178129
捐赠科研通 4459258
什么是DOI,文献DOI怎么找? 2445268
邀请新用户注册赠送积分活动 1436498
关于科研通互助平台的介绍 1413803