光催化
降级(电信)
光电效应
催化作用
材料科学
反应速率常数
密度泛函理论
化学工程
光电子学
化学
动力学
计算化学
有机化学
工程类
电信
物理
量子力学
计算机科学
作者
Mianmian Wu,Nan Li,Minghao Shi,Guifang Sun,Wenjing Shen,Qingfei Li,Jiangquan Ma
出处
期刊:Dalton Transactions
[Royal Society of Chemistry]
日期:2023-01-01
卷期号:52 (36): 12852-12861
被引量:2
摘要
Efficient spatial charge separation plays a crucial role in improving the photocatalytic performance. Therefore, 1T/2H MoSe2/BiOCl (1T/2H MS/BOC) and 2H MoSe2/BiOCl (2H MS/BOC) piezo-photocatalysts are synthesized. By combining piezoelectric catalysis and photocatalysis, a highly active piezo-photocatalytic process is realized. The optimal 1T/2H MS/BOC piezo-photocatalyst displays superior diclofenac (DCF) degradation and hydrogen (H2) evolution activity under the combined action of ultrasound and light. In particular, the DCF degradation kinetic constant (k) of optimal 0.5% 1T/2H MS/BOC under the synergistic effect of ultrasound and light is 0.057 min-1, which is 8.1 and 6.3 times higher than those of BiOCl (0.007 min-1) and 0.5% 2H MS/BOC (0.009 min-1). Moreover, the H2 evolution rate of 0.5% 1T/2H MS/BOC is 122.5 μmol g-1 h-1, which is also higher than those of BiOCl (45.8 μmol g-1 h-1) and 2H MS/BOC (49.5 μmol g-1 h-1). The dramatic improvement in the DCF degradation and H2 evolution piezo-photocatalytic performance of 1T/2H MS/BOC catalysts is ascribed to the built-in polarization electric field and abundance of active sites of 1T/2H MS/BOC as well as the advantageous band structure between BiOCl and 1T/2H MoSe2. Additionally, three probable degradation pathways of DCF were put forward from the results of liquid chromatography-mass spectrometry (LCMS) and density functional theory (DFT) calculations. This study provides the design strategy of high efficiency piezo-photocatalysts in environmental purification and energy-generation fields based on phase and band structure engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI