生物
细胞生物学
神经炎症
免疫系统
肠-脑轴
模式识别受体
肽聚糖
下调和上调
失调
小胶质细胞
神经科学
免疫学
肠道菌群
炎症
先天免疫系统
生物化学
基因
酶
作者
Wangchao Xu,Justin Rustenhoven,Christopher A. Nelson,Taitea Dykstra,Aura Ferreiro,Zachary Papadopoulos,Carey‐Ann D. Burnham,Gautam Dantas,Daved H. Fremont,Jonathan Kipnis
出处
期刊:Neuron
[Elsevier]
日期:2023-10-01
卷期号:111 (20): 3244-3254.e8
被引量:3
标识
DOI:10.1016/j.neuron.2023.07.010
摘要
Aging is a complex process involving various systems and behavioral changes. Altered immune regulation, dysbiosis, oxidative stress, and sleep decline are common features of aging, but their interconnection is poorly understood. Using Drosophila, we discover that IM33, a novel immune modulator, and its mammalian homolog, secretory leukocyte protease inhibitor (SLPI), are upregulated in old flies and old mice, respectively. Knockdown of IM33 in glia elevates the gut reactive oxygen species (ROS) level and alters gut microbiota composition, including increased Lactiplantibacillus plantarum abundance, leading to a shortened lifespan. Additionally, dysbiosis induces sleep fragmentation through the activation of insulin-producing cells in the brain, which is mediated by the binding of Lactiplantibacillus plantarum-produced DAP-type peptidoglycan to the peptidoglycan recognition protein LE (PGRP-LE) receptor. Therefore, IM33 plays a role in the glia-microbiota-neuronal axis, connecting neuroinflammation, dysbiosis, and sleep decline during aging. Identifying molecular mediators of these processes could lead to the development of innovative strategies for extending lifespan.
科研通智能强力驱动
Strongly Powered by AbleSci AI