ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction

水准点(测量) 计算机科学 一般化 人工智能 特征(语言学) 机器学习 接收机工作特性 均方误差 集合(抽象数据类型) 一致性(知识库) 数据挖掘 数学 统计 哲学 数学分析 程序设计语言 地理 语言学 大地测量学
作者
Kejie Fang,Yiming Zhang,Shiyu Du,Jian He
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107372-107372 被引量:18
标识
DOI:10.1016/j.compbiomed.2023.107372
摘要

Accurate prediction of drug-target affinity (DTA) plays a crucial role in drug discovery and development. Recently, deep learning methods have shown excellent predictive performance on randomly split public datasets. However, verifications are still required on this splitting method to reflect real-world problems in practical applications. And in a cold-start experimental setup, where drugs or proteins in the test set do not appear in the training set, the performance of deep learning models often significantly decreases. This indicates that improving the generalization ability of the models remains a challenge. To this end, in this study, we propose ColdDTA: using data augmentation and attention-based feature fusion to improve the generalization ability of predicting drug-target binding affinity. Specifically, ColdDTA generates new drug-target pairs by removing subgraphs of drugs. The attention-based feature fusion module is also used to better capture the drug-target interactions. We conduct cold-start experiments on three benchmark datasets, and the consistency index (CI) and mean square error (MSE) results on the Davis and KIBA datasets show that ColdDTA outperforms the five state-of-the-art baseline methods. Meanwhile, the results of area under the receiver operating characteristic (ROC-AUC) on the BindingDB dataset show that ColdDTA also has better performance on the classification task. Furthermore, visualizing the model weights allows for interpretable insights. Overall, ColdDTA can better solve the realistic DTA prediction problem. The code has been available to the public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ym发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
小哦嘿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小哦嘿应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
爱吃地锅鱼完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
cgh发布了新的文献求助10
6秒前
7秒前
filili完成签到,获得积分10
7秒前
烂漫的涫完成签到 ,获得积分10
9秒前
来了来了完成签到 ,获得积分10
9秒前
11秒前
一一完成签到,获得积分10
11秒前
浮游应助Qian采纳,获得10
11秒前
mtfx发布了新的文献求助20
11秒前
12秒前
12秒前
CipherSage应助微笑晓丝采纳,获得10
12秒前
Owen应助cgh采纳,获得10
13秒前
14秒前
浮游应助fzzf采纳,获得10
15秒前
15秒前
优美紫槐应助成就的鲂采纳,获得10
17秒前
18秒前
kakawang完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176