ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction

水准点(测量) 计算机科学 一般化 人工智能 特征(语言学) 机器学习 接收机工作特性 均方误差 集合(抽象数据类型) 一致性(知识库) 数据挖掘 数学 统计 数学分析 语言学 哲学 大地测量学 程序设计语言 地理
作者
Kejie Fang,Yiming Zhang,Shiyu Du,Jian He
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107372-107372 被引量:12
标识
DOI:10.1016/j.compbiomed.2023.107372
摘要

Accurate prediction of drug-target affinity (DTA) plays a crucial role in drug discovery and development. Recently, deep learning methods have shown excellent predictive performance on randomly split public datasets. However, verifications are still required on this splitting method to reflect real-world problems in practical applications. And in a cold-start experimental setup, where drugs or proteins in the test set do not appear in the training set, the performance of deep learning models often significantly decreases. This indicates that improving the generalization ability of the models remains a challenge. To this end, in this study, we propose ColdDTA: using data augmentation and attention-based feature fusion to improve the generalization ability of predicting drug-target binding affinity. Specifically, ColdDTA generates new drug-target pairs by removing subgraphs of drugs. The attention-based feature fusion module is also used to better capture the drug-target interactions. We conduct cold-start experiments on three benchmark datasets, and the consistency index (CI) and mean square error (MSE) results on the Davis and KIBA datasets show that ColdDTA outperforms the five state-of-the-art baseline methods. Meanwhile, the results of area under the receiver operating characteristic (ROC-AUC) on the BindingDB dataset show that ColdDTA also has better performance on the classification task. Furthermore, visualizing the model weights allows for interpretable insights. Overall, ColdDTA can better solve the realistic DTA prediction problem. The code has been available to the public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
刚刚
曾经的臻发布了新的文献求助10
刚刚
纯真的棉花糖完成签到,获得积分10
2秒前
2秒前
kdkfjaljk发布了新的文献求助10
2秒前
NexusExplorer应助牧连碧采纳,获得10
3秒前
jlux发布了新的文献求助30
3秒前
万能图书馆应助lt_zyk采纳,获得10
4秒前
yishenpf应助流光采纳,获得10
5秒前
yishenpf发布了新的文献求助10
5秒前
王明慧完成签到 ,获得积分10
6秒前
酷波er应助范白白采纳,获得10
6秒前
6秒前
6秒前
7秒前
8秒前
雨声完成签到,获得积分10
8秒前
yujie发布了新的文献求助10
8秒前
miolee完成签到,获得积分10
8秒前
是番茄总会发光的完成签到,获得积分10
9秒前
桐桐应助哈哈采纳,获得10
9秒前
Lucas完成签到,获得积分10
10秒前
10秒前
Lucas应助放放风采纳,获得10
10秒前
沧笙踏歌发布了新的文献求助10
10秒前
李爱国应助jlux采纳,获得10
11秒前
吱吱完成签到,获得积分20
11秒前
果味桃完成签到,获得积分10
11秒前
11秒前
12秒前
灰色的乌完成签到,获得积分10
12秒前
13秒前
lala发布了新的文献求助10
13秒前
小蘑菇应助紫心采纳,获得10
14秒前
希望天下0贩的0应助adore采纳,获得10
14秒前
14秒前
14秒前
zyh应助研究啥采纳,获得10
14秒前
牧连碧发布了新的文献求助10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502587
关于积分的说明 11108917
捐赠科研通 3233359
什么是DOI,文献DOI怎么找? 1787265
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122