ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction

水准点(测量) 计算机科学 一般化 人工智能 特征(语言学) 机器学习 接收机工作特性 均方误差 集合(抽象数据类型) 一致性(知识库) 数据挖掘 数学 统计 哲学 数学分析 程序设计语言 地理 语言学 大地测量学
作者
Kejie Fang,Yiming Zhang,Shiyu Du,Jian He
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107372-107372 被引量:18
标识
DOI:10.1016/j.compbiomed.2023.107372
摘要

Accurate prediction of drug-target affinity (DTA) plays a crucial role in drug discovery and development. Recently, deep learning methods have shown excellent predictive performance on randomly split public datasets. However, verifications are still required on this splitting method to reflect real-world problems in practical applications. And in a cold-start experimental setup, where drugs or proteins in the test set do not appear in the training set, the performance of deep learning models often significantly decreases. This indicates that improving the generalization ability of the models remains a challenge. To this end, in this study, we propose ColdDTA: using data augmentation and attention-based feature fusion to improve the generalization ability of predicting drug-target binding affinity. Specifically, ColdDTA generates new drug-target pairs by removing subgraphs of drugs. The attention-based feature fusion module is also used to better capture the drug-target interactions. We conduct cold-start experiments on three benchmark datasets, and the consistency index (CI) and mean square error (MSE) results on the Davis and KIBA datasets show that ColdDTA outperforms the five state-of-the-art baseline methods. Meanwhile, the results of area under the receiver operating characteristic (ROC-AUC) on the BindingDB dataset show that ColdDTA also has better performance on the classification task. Furthermore, visualizing the model weights allows for interpretable insights. Overall, ColdDTA can better solve the realistic DTA prediction problem. The code has been available to the public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮幻莲发布了新的文献求助10
1秒前
大大完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
科研通AI6应助小柯采纳,获得10
2秒前
汉堡包应助ccc采纳,获得10
2秒前
3秒前
1226813885发布了新的文献求助10
3秒前
3秒前
yeyeye完成签到,获得积分10
4秒前
张张张xxx完成签到,获得积分10
4秒前
mary611完成签到,获得积分10
4秒前
乌龟娟完成签到,获得积分10
6秒前
默存发布了新的文献求助10
7秒前
Steffi完成签到,获得积分10
7秒前
科研通AI5应助张mingyu123采纳,获得10
7秒前
高高ai发布了新的文献求助10
7秒前
7秒前
7秒前
FashionBoy应助NTw_wzw采纳,获得10
8秒前
剑门侠客应助一点点脸红采纳,获得10
8秒前
domingo发布了新的文献求助30
8秒前
777完成签到,获得积分10
8秒前
鱼不鱼发布了新的文献求助10
8秒前
浮游应助李闻闻采纳,获得10
8秒前
47完成签到,获得积分10
9秒前
HMX完成签到,获得积分10
9秒前
9秒前
隐形曼青应助Fiona采纳,获得30
10秒前
香蕉觅云应助zSmart采纳,获得10
12秒前
英姑应助柔弱翎采纳,获得30
13秒前
13秒前
鱼不鱼完成签到,获得积分10
15秒前
16秒前
彭半梦发布了新的文献求助10
16秒前
env完成签到,获得积分10
17秒前
文艺的曼柔完成签到 ,获得积分10
17秒前
碧蓝的盼夏完成签到,获得积分10
17秒前
单薄茗完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598