ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction

水准点(测量) 计算机科学 一般化 人工智能 特征(语言学) 机器学习 接收机工作特性 均方误差 集合(抽象数据类型) 一致性(知识库) 数据挖掘 数学 统计 哲学 数学分析 程序设计语言 地理 语言学 大地测量学
作者
Kejie Fang,Yiming Zhang,Shiyu Du,Jian He
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107372-107372 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107372
摘要

Accurate prediction of drug-target affinity (DTA) plays a crucial role in drug discovery and development. Recently, deep learning methods have shown excellent predictive performance on randomly split public datasets. However, verifications are still required on this splitting method to reflect real-world problems in practical applications. And in a cold-start experimental setup, where drugs or proteins in the test set do not appear in the training set, the performance of deep learning models often significantly decreases. This indicates that improving the generalization ability of the models remains a challenge. To this end, in this study, we propose ColdDTA: using data augmentation and attention-based feature fusion to improve the generalization ability of predicting drug-target binding affinity. Specifically, ColdDTA generates new drug-target pairs by removing subgraphs of drugs. The attention-based feature fusion module is also used to better capture the drug-target interactions. We conduct cold-start experiments on three benchmark datasets, and the consistency index (CI) and mean square error (MSE) results on the Davis and KIBA datasets show that ColdDTA outperforms the five state-of-the-art baseline methods. Meanwhile, the results of area under the receiver operating characteristic (ROC-AUC) on the BindingDB dataset show that ColdDTA also has better performance on the classification task. Furthermore, visualizing the model weights allows for interpretable insights. Overall, ColdDTA can better solve the realistic DTA prediction problem. The code has been available to the public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
imaginehdxy发布了新的文献求助10
刚刚
派大星完成签到,获得积分10
刚刚
刚刚
1秒前
4秒前
5秒前
7秒前
脑洞疼应助阳阳采纳,获得10
10秒前
专注秋尽发布了新的文献求助10
11秒前
13秒前
默默的棒棒糖完成签到 ,获得积分10
15秒前
15秒前
SONG关注了科研通微信公众号
15秒前
16秒前
ding应助呆头采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
sutharsons应助科研通管家采纳,获得30
16秒前
axin应助科研通管家采纳,获得10
16秒前
terence应助科研通管家采纳,获得30
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
sutharsons应助科研通管家采纳,获得30
16秒前
852应助科研通管家采纳,获得10
16秒前
hh应助科研通管家采纳,获得10
16秒前
sun发布了新的文献求助10
17秒前
17秒前
zhu完成签到,获得积分10
17秒前
酷波er应助缚大哥采纳,获得10
18秒前
李健应助明理雨筠采纳,获得10
18秒前
wang发布了新的文献求助10
20秒前
木头人给step_stone的求助进行了留言
20秒前
魏伯安完成签到,获得积分10
21秒前
朴素尔岚发布了新的文献求助10
22秒前
科研通AI5应助nextconnie采纳,获得10
22秒前
务实的犀牛完成签到,获得积分10
23秒前
23秒前
Blue_Pig发布了新的文献求助10
23秒前
24秒前
科研通AI2S应助橙子fy16_采纳,获得10
25秒前
LGJ完成签到,获得积分10
25秒前
wang完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849