Multi-reservoir ESN-based prediction strategy for dynamic multi-objective optimization

计算机科学 数学优化 趋同(经济学) 多目标优化 进化算法 人口 插值(计算机图形学) 机器学习 人工智能 数学 图像(数学) 人口学 社会学 经济 经济增长
作者
Cuili Yang,Danlei Wang,Jian Tang,Junfei Qiao,Wen Yu
出处
期刊:Information Sciences [Elsevier]
卷期号:652: 119495-119495 被引量:11
标识
DOI:10.1016/j.ins.2023.119495
摘要

Dynamic multi-objective optimization problems (DMOPs) have several conflicting and time-varying objectives or constraints. To quickly follow the dynamical Pareto optimal front (POF) of DMOPs, prediction model-based optimization algorithms have been widely studied. However, in most existing prediction-based methods, only the linear relationship of historical solutions is studied, and complex correlations among the decision variables are always ignored. To address this issue, the multi-reservoir ESN (MRESN) based predictor is designed and integrated with the multi-objective evolutionary algorithm based on decomposition (MOEA/D), which is called MRESN-MOEA/D in short. The comprehensive relationship among the previous solutions is derived using the MRESN predictor, whose multi-reservoir structure projects the inputs into the complex echo-state space and enhances the information sharing among the decision variables. To overcome the limitation caused by insufficient training solutions, the fractal interpolation technique is implemented before MRESN training. Then, the trained MRESN predictor is applied to produce the original population for the new environment. Finally, MRESN-MOEA/D is applied in both simulated benchmarks and an actual dynamical wastewater treatment system. The experiment results illustrate that the proposed algorithm outperforms other state-of-the-art methods with better convergence and diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
桓某人发布了新的文献求助10
2秒前
3秒前
dcx完成签到 ,获得积分10
5秒前
大个应助暗眸采纳,获得10
5秒前
6秒前
默默的青烟完成签到,获得积分10
6秒前
DD发布了新的文献求助10
6秒前
心信鑫发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
8秒前
HHY完成签到,获得积分10
8秒前
完美世界应助sujingbo采纳,获得10
9秒前
会飞的猪qq完成签到,获得积分10
9秒前
希望天下0贩的0应助想想采纳,获得10
9秒前
能用就行完成签到,获得积分10
9秒前
bluesky发布了新的文献求助10
11秒前
Wmmmmm发布了新的文献求助10
12秒前
Akim应助起风了采纳,获得10
12秒前
卡卡发布了新的文献求助10
12秒前
Nz96ForU发布了新的文献求助10
12秒前
可爱的函函应助不二采纳,获得10
12秒前
孤独冷霜发布了新的文献求助10
13秒前
科研大王发布了新的文献求助10
13秒前
14秒前
科研通AI6应助hbhbj采纳,获得10
14秒前
漫漫完成签到 ,获得积分10
16秒前
17秒前
19秒前
21秒前
21秒前
荣荣发布了新的文献求助30
21秒前
李锐发布了新的文献求助10
22秒前
愉快的老三完成签到,获得积分10
22秒前
Ava应助霸气不凡采纳,获得10
23秒前
23秒前
23秒前
suiminmin发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458037
求助须知:如何正确求助?哪些是违规求助? 4564228
关于积分的说明 14293977
捐赠科研通 4488967
什么是DOI,文献DOI怎么找? 2458832
邀请新用户注册赠送积分活动 1448759
关于科研通互助平台的介绍 1424403