Multi-reservoir ESN-based prediction strategy for dynamic multi-objective optimization

计算机科学 数学优化 趋同(经济学) 多目标优化 进化算法 人口 插值(计算机图形学) 机器学习 人工智能 数学 图像(数学) 人口学 社会学 经济 经济增长
作者
Cuili Yang,Danlei Wang,Jian Tang,Junfei Qiao,Wen Yu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:652: 119495-119495 被引量:9
标识
DOI:10.1016/j.ins.2023.119495
摘要

Dynamic multi-objective optimization problems (DMOPs) have several conflicting and time-varying objectives or constraints. To quickly follow the dynamical Pareto optimal front (POF) of DMOPs, prediction model-based optimization algorithms have been widely studied. However, in most existing prediction-based methods, only the linear relationship of historical solutions is studied, and complex correlations among the decision variables are always ignored. To address this issue, the multi-reservoir ESN (MRESN) based predictor is designed and integrated with the multi-objective evolutionary algorithm based on decomposition (MOEA/D), which is called MRESN-MOEA/D in short. The comprehensive relationship among the previous solutions is derived using the MRESN predictor, whose multi-reservoir structure projects the inputs into the complex echo-state space and enhances the information sharing among the decision variables. To overcome the limitation caused by insufficient training solutions, the fractal interpolation technique is implemented before MRESN training. Then, the trained MRESN predictor is applied to produce the original population for the new environment. Finally, MRESN-MOEA/D is applied in both simulated benchmarks and an actual dynamical wastewater treatment system. The experiment results illustrate that the proposed algorithm outperforms other state-of-the-art methods with better convergence and diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
夏天垚完成签到,获得积分10
4秒前
华仔应助苹果不是梨采纳,获得10
7秒前
zcx完成签到,获得积分10
8秒前
儒雅的焦完成签到,获得积分10
8秒前
8秒前
10秒前
bboo完成签到,获得积分10
10秒前
Ava应助归雁采纳,获得10
11秒前
wanci应助666采纳,获得10
11秒前
乐南完成签到,获得积分10
18秒前
万能图书馆应助likai采纳,获得10
20秒前
今天读书了没完成签到,获得积分20
21秒前
21秒前
leyangya完成签到,获得积分20
23秒前
顾矜应助牛马采纳,获得10
24秒前
25秒前
25秒前
小乌龟完成签到,获得积分10
26秒前
气味发布了新的文献求助10
27秒前
小海完成签到,获得积分10
28秒前
梦醒时见你完成签到,获得积分10
30秒前
xiaoyan完成签到,获得积分10
37秒前
科研通AI2S应助梦醒时见你采纳,获得10
37秒前
sxy发布了新的文献求助20
38秒前
38秒前
李一发布了新的文献求助10
38秒前
刘亚茹完成签到,获得积分20
38秒前
40秒前
lqqq发布了新的文献求助10
43秒前
小二郎应助fanfan采纳,获得10
43秒前
44秒前
嘀嘀嘀发布了新的文献求助10
44秒前
likai发布了新的文献求助10
45秒前
领导范儿应助科研通管家采纳,获得10
46秒前
46秒前
科研通AI5应助科研通管家采纳,获得30
46秒前
顾矜应助科研通管家采纳,获得10
46秒前
wmuer完成签到 ,获得积分10
46秒前
晨光中完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761818
求助须知:如何正确求助?哪些是违规求助? 3305596
关于积分的说明 10134822
捐赠科研通 3019634
什么是DOI,文献DOI怎么找? 1658239
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754751