Localization and phenotyping of tuberculosis bacteria using a combination of deep learning and SVMs

荧光显微镜 结核分枝杆菌 人工智能 支持向量机 显微镜 特征(语言学) 模式识别(心理学) 雅卡索引 计算机科学 计算生物学 肺结核 生物 生物系统 荧光 病理 医学 物理 哲学 量子力学 语言学
作者
Marios Zachariou,Ognjen Arandjelović,Evelin Dombay,Wilber Sabiiti,Bariki Mtafya,Nyanda Elias Ntinginya,Derek J. Sloan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107573-107573 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107573
摘要

Successful treatment of pulmonary tuberculosis (TB) depends on early diagnosis and careful monitoring of treatment response. Identification of acid-fast bacilli by fluorescence microscopy of sputum smears is a common tool for both tasks. Microscopy-based analysis of the intracellular lipid content and dimensions of individual Mycobacterium tuberculosis (Mtb) cells also describe phenotypic changes which may improve our biological understanding of antibiotic therapy for TB. However, fluorescence microscopy is a challenging, time-consuming and subjective procedure. In this work, we automate examination of fields of view (FOVs) from microscopy images to determine the lipid content and dimensions (length and width) of Mtb cells. We introduce an adapted variation of the UNet model to efficiently localizing bacteria within FOVs stained by two fluorescence dyes; auramine O to identify Mtb and LipidTox Red to identify intracellular lipids. Thereafter, we propose a feature extractor in conjunction with feature descriptors to extract a representation into a support vector multi-regressor and estimate the length and width of each bacterium. Using a real-world data corpus from Tanzania, the proposed method i) outperformed previous methods for bacterial detection with a 4% improvement in the Jaccard index and ii) estimated the cell length and width with a root mean square error of less than 0.01%. Our network can be used to examine phenotypic characteristics of Mtb cells visualised by fluorescence microscopy, improving consistency and time efficiency of this procedure compared to manual methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛虫完成签到,获得积分10
1秒前
研友_VZG7GZ应助stretchability采纳,获得10
1秒前
万能图书馆应助筑梦采纳,获得10
2秒前
Kai完成签到,获得积分10
4秒前
5秒前
烟花应助开心之王采纳,获得10
5秒前
8秒前
mzc发布了新的文献求助30
9秒前
12秒前
张正完成签到,获得积分10
13秒前
13秒前
UAU发布了新的文献求助10
16秒前
右旋王小二完成签到,获得积分10
17秒前
光亮的冰薇完成签到 ,获得积分10
18秒前
南宫书瑶完成签到,获得积分10
20秒前
从容乌完成签到 ,获得积分10
20秒前
zzh发布了新的文献求助10
20秒前
21秒前
Ava应助愉快寄真采纳,获得10
21秒前
小明surine完成签到 ,获得积分10
21秒前
anders完成签到 ,获得积分10
22秒前
Lixuan完成签到,获得积分10
23秒前
晶晶完成签到,获得积分10
24秒前
四夕完成签到 ,获得积分10
24秒前
24秒前
脑洞疼应助冰可乐采纳,获得10
24秒前
香蕉觅云应助难过的谷芹采纳,获得10
25秒前
Peggy发布了新的文献求助10
26秒前
26秒前
fangfang发布了新的文献求助10
29秒前
moqianhao完成签到 ,获得积分10
30秒前
31秒前
夏墨发布了新的文献求助10
31秒前
32秒前
负数完成签到,获得积分10
33秒前
哈哈哈发布了新的文献求助10
33秒前
34秒前
在水一方应助dilibolaba采纳,获得10
34秒前
杨炀发布了新的文献求助10
36秒前
萧水白应助WTaMi采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498