荧光显微镜
结核分枝杆菌
人工智能
支持向量机
显微镜
特征(语言学)
模式识别(心理学)
雅卡索引
计算机科学
计算生物学
肺结核
生物
生物系统
荧光
病理
医学
物理
语言学
哲学
量子力学
作者
Marios Zachariou,Ognjen Arandjelović,Evelin Dombay,Wilber Sabiiti,Bariki Mtafya,Nyanda Elias Ntinginya,Derek J. Sloan
标识
DOI:10.1016/j.compbiomed.2023.107573
摘要
Successful treatment of pulmonary tuberculosis (TB) depends on early diagnosis and careful monitoring of treatment response. Identification of acid-fast bacilli by fluorescence microscopy of sputum smears is a common tool for both tasks. Microscopy-based analysis of the intracellular lipid content and dimensions of individual Mycobacterium tuberculosis (Mtb) cells also describe phenotypic changes which may improve our biological understanding of antibiotic therapy for TB. However, fluorescence microscopy is a challenging, time-consuming and subjective procedure. In this work, we automate examination of fields of view (FOVs) from microscopy images to determine the lipid content and dimensions (length and width) of Mtb cells. We introduce an adapted variation of the UNet model to efficiently localizing bacteria within FOVs stained by two fluorescence dyes; auramine O to identify Mtb and LipidTox Red to identify intracellular lipids. Thereafter, we propose a feature extractor in conjunction with feature descriptors to extract a representation into a support vector multi-regressor and estimate the length and width of each bacterium. Using a real-world data corpus from Tanzania, the proposed method i) outperformed previous methods for bacterial detection with a 4% improvement in the Jaccard index and ii) estimated the cell length and width with a root mean square error of less than 0.01%. Our network can be used to examine phenotypic characteristics of Mtb cells visualised by fluorescence microscopy, improving consistency and time efficiency of this procedure compared to manual methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI