作者
Tao Zhang,Shusheng Wu,Rongwei Xu,Shuguang Zhang,Minghai Wang,Jie Li
摘要
The objective of this study is to determine how Musashi-2 (MSI2) affects vascular smooth muscle cell (VSMC) phenotypic switch and contributes to atherosclerosis (AS). Primary mouse VSMCs were transfected with MSI2 specific siRNA and treated with platelet-derived growth factor-BB (PDGF-BB). The proliferation, cell-cycle, and migration of VSMCs were determined by CCK-8, flow cytometry, wound healing, and transwell assays. Western blot and qRT-PCR were conducted to analyze the protein and mRNA expression. Moreover, the correlation between MSI2, Fbxo6, Rnaset2, and chemokine signaling was predicted and verified using RNAct database, KEGG, wiki, RNA-binding protein immunoprecipitation and co-immunoprecipitation. Moreover, H&E and Oil Red O staining were employed for assessing necrotic core and lipid accumulation in AS mouse aorta tissues. The numbers of B lymphocytes and monocytes, and the levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDLC), and low-density lipoprotein cholesterol (LDL-C) in AS mice blood were investigated using flow cytometry and corresponding commercial kits, respectively. MSI2 was up-regulated in the PDGF-BB-treated VSMCs. Knockdown of MSI2 inhibited VSMC proliferation, cell-cycle, and migration. Moreover, MSI2 regulated VSMC phenotypic switch through binding with Fbxo6 to induce Rnaset2 ubiquitination. MSI2 knockdown inhibited chemokine signaling via regulating Fbxo6/Rnaset2 axis. In AS mice, knockdown of MSI2 inhibited the formation of necrotic core and atherosclerotic plaque, and inhibited chemokine signaling via regulating Fbxo6/Rnaset2 axis. Our findings demonstrated that MSI2 could bind with Fbxo6 to induce Rnaset2 ubiquitination and the activation of chemokine signaling pathway during VSMC phenotypic switch in AS.