Multi-objective multi-agent deep reinforcement learning to reduce bus bunching for multiline services with a shared corridor

强化学习 计算机科学 过境(卫星) 直线(几何图形) 控制(管理) 偏爱 服务(商务) 公共交通 国家(计算机科学) 实时计算 运输工程 分布式计算 工程类 人工智能 数学 算法 经济 经济 几何学 统计
作者
Jiawei Wang,Lijun Sun
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:155: 104309-104309 被引量:14
标识
DOI:10.1016/j.trc.2023.104309
摘要

Bus bunching is a long-standing problem in transit operation and ruining the regularity of transit service. In a typical urban transit network setting of multiple lines with a shared corridor, bus bunching becomes more frequent as there is more uncertainty inside the shared corridor. While multi-agent reinforcement learning (MARL) has been a promising scheme for learning efficient control policy in a multi-agent system, few studies have explored its applicability in multi-line transit control scenarios. In this study, we focus on a basic transit network where there are two bus lines with a shared corridor. An efficient MARL framework is proposed to learn multi-line bus holding control to avoid bus bunching. Specifically, we design observation and reward functions that incorporate multi-line information. In addition, a preference weights producer is introduced to update the objective weights towards a good trajectory evaluation during daily transit operation. In this way, we handle the multi-objective issue in multi-line control. In experimental studies, we validate the superiority of the method in real-world bus lines. Results show that the state and reward augmented with multi-line information benefit MARL in multi-line bus control. Besides, by updating preference weights towards less passenger waiting time, the regularity of transit service is further improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传统的松鼠完成签到 ,获得积分10
1秒前
Pumpkin完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
amywang1931发布了新的文献求助10
5秒前
7秒前
落俗发布了新的文献求助10
8秒前
spp发布了新的文献求助10
11秒前
12秒前
amywang1931完成签到,获得积分10
13秒前
13秒前
15秒前
小狗不是抠脚兵完成签到,获得积分10
15秒前
归途完成签到 ,获得积分10
16秒前
mmr发布了新的文献求助60
16秒前
Orange应助乱武采纳,获得30
16秒前
浔xxx发布了新的文献求助10
17秒前
18秒前
19秒前
21秒前
22秒前
23秒前
24秒前
25秒前
已知中的未知完成签到 ,获得积分10
27秒前
28秒前
斯文觅珍发布了新的文献求助10
28秒前
space完成签到,获得积分10
29秒前
张雷应助科研通管家采纳,获得20
29秒前
科目三应助科研通管家采纳,获得10
29秒前
ED应助科研通管家采纳,获得10
29秒前
所所应助科研通管家采纳,获得10
30秒前
Owen应助科研通管家采纳,获得10
30秒前
上官若男应助科研通管家采纳,获得10
30秒前
1111应助科研通管家采纳,获得10
30秒前
YamDaamCaa应助科研通管家采纳,获得30
30秒前
30秒前
30秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993454
求助须知:如何正确求助?哪些是违规求助? 3534113
关于积分的说明 11264719
捐赠科研通 3273986
什么是DOI,文献DOI怎么找? 1806200
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662