Similar Bug Reports Recommendation System using BERT

计算机科学 背景(考古学) 相似性(几何) 矢量化(数学) 软件 体积热力学 软件错误 情报检索 数据挖掘 软件工程 人工智能 程序设计语言 古生物学 物理 量子力学 并行计算 图像(数学) 生物
作者
Guilherme Carneiro,José Lucas Soares Ferreira,Franklin Ramalho,Tiago Massoni
标识
DOI:10.1145/3613372.3613396
摘要

In order to document software issues so that they can be later analyzed and corrected, Bug Reports (BR) are used. According to Mozilla’s Bugzilla, as an example, over 8,000 new bugs were reported for Firefox in 2020. Thus, a recommendation system can be a valuable tool to improve productivity in software development, especially when dealing with a high volume of BRs to be reviewed and possibly fixed by the maintainers. This study proposes and evaluates a BR recommendation system based on textual similarity, with the differential use of the state-of-the-art text comprehension model BERT as one of the factors in the similarity calculation. We use a dataset with 106k Mozilla BRs extracted from Bugzilla, an open-source platform. The main objective is to improve suggestions for BRs with a context close to that provided by the maintainer. In the study, we experimented with the BERT model adopting the similarity calculation as individually as together with the well-known TF-IDF vectorization technique. The results attest that there were gains of approximately 14% in the frequency of relevant BRs for the first 20 recommendations compared to a baseline technique that adopts only the TF-IDF vectorization approach. The BERT model added improvements to the evaluated metrics (precision, feedback, and likelihood) when complementary to TF-IDF, but did not perform positively in an isolated manner. Overall, the findings could have implications for software development teams handling a high volume of BRs and potentially increase their productivity in resolving BRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JonyiCheng完成签到,获得积分10
刚刚
科研通AI5应助典雅又夏采纳,获得10
1秒前
风趣的无剑完成签到,获得积分10
1秒前
1秒前
anpucle发布了新的文献求助10
1秒前
跳不起来的大神完成签到 ,获得积分10
1秒前
科研乐色完成签到,获得积分10
1秒前
Drew完成签到,获得积分10
3秒前
挤爆沙丁鱼完成签到 ,获得积分10
3秒前
彭于晏应助fff采纳,获得10
3秒前
3秒前
Agernon应助yaya采纳,获得10
3秒前
四夕完成签到 ,获得积分10
4秒前
汉堡包应助执着的小蘑菇采纳,获得10
4秒前
西哈哈发布了新的文献求助10
4秒前
搜集达人应助酷炫大树采纳,获得10
5秒前
5秒前
5秒前
外向的沅完成签到,获得积分20
5秒前
bkagyin应助zy采纳,获得10
6秒前
香蕉觅云应助好了采纳,获得10
6秒前
南逸然发布了新的文献求助10
7秒前
7秒前
xiaohe完成签到,获得积分10
7秒前
7秒前
隐形曼青应助camera采纳,获得10
7秒前
狗狗完成签到 ,获得积分10
8秒前
SciGPT应助Melody采纳,获得10
8秒前
听粥发布了新的文献求助10
8秒前
小张在进步完成签到,获得积分10
9秒前
科研通AI5应助WNL采纳,获得10
9秒前
阿蒙发布了新的文献求助10
9秒前
自觉石头完成签到 ,获得积分10
10秒前
田様应助岁月轮回采纳,获得10
10秒前
hao完成签到,获得积分10
10秒前
bjbbh发布了新的文献求助10
10秒前
皓月千里完成签到,获得积分10
10秒前
夏小安完成签到,获得积分10
10秒前
11秒前
ymh完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678