Learning Unified Hyper-Network for Multi-Modal MR Image Synthesis and Tumor Segmentation With Missing Modalities

计算机科学 模态(人机交互) 人工智能 分割 特征(语言学) 模式 模式识别(心理学) 基本事实 图像分割 特征向量 计算机视觉 社会科学 哲学 语言学 社会学
作者
Heran Yang,Jian Sun,Zongben Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3678-3689 被引量:11
标识
DOI:10.1109/tmi.2023.3301934
摘要

Accurate segmentation of brain tumors is of critical importance in clinical assessment and treatment planning, which requires multiple MR modalities providing complementary information. However, due to practical limits, one or more modalities may be missing in real scenarios. To tackle this problem, existing methods need to train multiple networks or a unified but fixed network for various possible missing modality cases, which leads to high computational burdens or sub-optimal performance. In this paper, we propose a unified and adaptive multi-modal MR image synthesis method, and further apply it to tumor segmentation with missing modalities. Based on the decomposition of multi-modal MR images into common and modality-specific features, we design a shared hyper-encoder for embedding each available modality into the feature space, a graph-attention-based fusion block to aggregate the features of available modalities to the fused features, and a shared hyper-decoder for image reconstruction. We also propose an adversarial common feature constraint to enforce the fused features to be in a common space. As for missing modality segmentation, we first conduct the feature-level and image-level completion using our synthesis method and then segment the tumors based on the completed MR images together with the extracted common features. Moreover, we design a hypernet-based modulation module to adaptively utilize the real and synthetic modalities. Experimental results suggest that our method can not only synthesize reasonable multi-modal MR images, but also achieve state-of-the-art performance on brain tumor segmentation with missing modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
君君发布了新的文献求助10
3秒前
4秒前
zqx完成签到 ,获得积分10
7秒前
8秒前
JUNJIU发布了新的文献求助20
9秒前
666应助登登采纳,获得10
9秒前
一梦丶初醒完成签到 ,获得积分10
10秒前
10秒前
Lucas应助小猫采纳,获得10
11秒前
11秒前
根号3完成签到,获得积分10
12秒前
zwjy完成签到,获得积分10
13秒前
14秒前
要减肥的chao完成签到,获得积分10
16秒前
英俊的铭应助ljx采纳,获得10
18秒前
20秒前
20秒前
长乐完成签到,获得积分10
21秒前
牛牛眉目发布了新的文献求助10
21秒前
大熊完成签到 ,获得积分10
23秒前
24秒前
zk200107发布了新的文献求助10
24秒前
逝月完成签到,获得积分10
27秒前
田様应助杜兰特采纳,获得10
27秒前
27秒前
单身的钧完成签到,获得积分10
29秒前
竹筏过海应助执着的绿柏采纳,获得30
29秒前
jyy应助调皮的浩天采纳,获得10
30秒前
jyy应助调皮的浩天采纳,获得10
30秒前
31秒前
31秒前
31秒前
ljx发布了新的文献求助10
31秒前
CipherSage应助DAZIDAZI02采纳,获得10
33秒前
bibabiu发布了新的文献求助10
35秒前
下课了吧完成签到 ,获得积分10
36秒前
634301059完成签到 ,获得积分10
36秒前
666完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361