Learning Unified Hyper-Network for Multi-Modal MR Image Synthesis and Tumor Segmentation With Missing Modalities

计算机科学 模态(人机交互) 人工智能 分割 特征(语言学) 模式 模式识别(心理学) 基本事实 图像分割 特征向量 计算机视觉 社会科学 哲学 语言学 社会学
作者
Heran Yang,Jian Sun,Zongben Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3678-3689 被引量:4
标识
DOI:10.1109/tmi.2023.3301934
摘要

Accurate segmentation of brain tumors is of critical importance in clinical assessment and treatment planning, which requires multiple MR modalities providing complementary information. However, due to practical limits, one or more modalities may be missing in real scenarios. To tackle this problem, existing methods need to train multiple networks or a unified but fixed network for various possible missing modality cases, which leads to high computational burdens or sub-optimal performance. In this paper, we propose a unified and adaptive multi-modal MR image synthesis method, and further apply it to tumor segmentation with missing modalities. Based on the decomposition of multi-modal MR images into common and modality-specific features, we design a shared hyper-encoder for embedding each available modality into the feature space, a graph-attention-based fusion block to aggregate the features of available modalities to the fused features, and a shared hyper-decoder for image reconstruction. We also propose an adversarial common feature constraint to enforce the fused features to be in a common space. As for missing modality segmentation, we first conduct the feature-level and image-level completion using our synthesis method and then segment the tumors based on the completed MR images together with the extracted common features. Moreover, we design a hypernet-based modulation module to adaptively utilize the real and synthetic modalities. Experimental results suggest that our method can not only synthesize reasonable multi-modal MR images, but also achieve state-of-the-art performance on brain tumor segmentation with missing modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XBL发布了新的文献求助10
1秒前
快毕业吧发布了新的文献求助10
1秒前
1秒前
1秒前
小k完成签到,获得积分10
1秒前
superZ完成签到,获得积分10
1秒前
豆沙包发布了新的文献求助10
1秒前
追寻的雨雪完成签到,获得积分10
4秒前
小白发布了新的文献求助10
5秒前
小蘑菇应助XX采纳,获得10
5秒前
斯文的可冥完成签到,获得积分10
6秒前
海雅完成签到 ,获得积分10
7秒前
丘比特应助xiaoze采纳,获得10
9秒前
舒心以蓝完成签到,获得积分10
11秒前
13秒前
汉堡包应助伶俐的星月采纳,获得10
14秒前
14秒前
我是老大应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得30
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
15秒前
慕青应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI2S应助小白采纳,获得10
17秒前
杨仔1227完成签到,获得积分10
17秒前
Zjin宇完成签到,获得积分10
18秒前
快毕业吧完成签到,获得积分10
18秒前
yinger1984完成签到,获得积分10
19秒前
19秒前
Hung完成签到,获得积分10
21秒前
景辣条发布了新的文献求助10
21秒前
23秒前
YUJIEYA完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
以菱发布了新的文献求助10
24秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149647
求助须知:如何正确求助?哪些是违规求助? 2800710
关于积分的说明 7841396
捐赠科研通 2458270
什么是DOI,文献DOI怎么找? 1308367
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706