Predicting mortality in hospitalized influenza patients: integration of deep learning-based chest X-ray severity score (FluDeep-XR) and clinical variables

人工智能 医学 接收机工作特性 机器学习 随机森林 队列 死亡率 计算机科学 内科学
作者
Meng‐Han Tsai,S Y Ko,Amy Huang,Lorenzo Porta,Cecilia Ferretti,Clarissa Longhi,Wan‐Ting Hsu,Yung-Han Chang,Jo-Ching Hsiung,Chin-Hua Su,Filippo Galbiati,Chien‐Chang Lee
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
标识
DOI:10.1093/jamia/ocae286
摘要

Abstract Objectives To pioneer the first artificial intelligence system integrating radiological and objective clinical data, simulating the clinical reasoning process, for the early prediction of high-risk influenza patients. Materials and Methods Our system was developed using a cohort from National Taiwan University Hospital in Taiwan, with external validation data from ASST Grande Ospedale Metropolitano Niguarda in Italy. Convolutional neural networks pretrained on ImageNet were regressively trained using a 5-point scale to develop the influenza chest X-ray (CXR) severity scoring model, FluDeep-XR. Early, late, and joint fusion structures, incorporating varying weights of CXR severity with clinical data, were designed to predict 30-day mortality and compared with models using only CXR or clinical data. The best-performing model was designated as FluDeep. The explainability of FluDeep-XR and FluDeep was illustrated through activation maps and SHapley Additive exPlanations (SHAP). Results The Xception-based model, FluDeep-XR, achieved a mean square error of 0.738 in the external validation dataset. The Random Forest-based late fusion model, FluDeep, outperformed all the other models, achieving an area under the receiver operating curve of 0.818 and a sensitivity of 0.706 in the external dataset. Activation maps highlighted clear lung fields. Shapley additive explanations identified age, C-reactive protein, hematocrit, heart rate, and respiratory rate as the top 5 important clinical features. Discussion The integration of medical imaging with objective clinical data outperformed single-modality models to predict 30-day mortality in influenza patients. We ensured the explainability of our models aligned with clinical knowledge and validated its applicability across foreign institutions. Conclusion FluDeep highlights the potential of combining radiological and clinical information in late fusion design, enhancing diagnostic accuracy and offering an explainable, and generalizable decision support system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知性的友易完成签到,获得积分10
刚刚
小鳄鱼一只完成签到,获得积分10
1秒前
小马甲应助lin采纳,获得10
3秒前
5秒前
不想说完成签到,获得积分10
5秒前
7秒前
9秒前
júpiter完成签到,获得积分10
9秒前
土豆你个西红柿完成签到 ,获得积分10
9秒前
Kyone完成签到,获得积分10
10秒前
木穹完成签到,获得积分10
11秒前
善学以致用应助louise采纳,获得10
12秒前
12秒前
花花发布了新的文献求助10
13秒前
bing发布了新的文献求助30
14秒前
ERICLEE82发布了新的文献求助10
14秒前
蜂蜜芥末小熊完成签到,获得积分10
15秒前
16秒前
Tom完成签到 ,获得积分10
17秒前
woyaocifan发布了新的文献求助10
18秒前
19秒前
19秒前
俊逸夜阑发布了新的文献求助10
21秒前
生活的狗完成签到,获得积分10
22秒前
红黄蓝完成签到 ,获得积分10
23秒前
ERICLEE82完成签到,获得积分10
23秒前
23秒前
骆驼牛子发布了新的文献求助30
24秒前
明亮的初阳应助苏格拉胯采纳,获得10
24秒前
100完成签到,获得积分10
25秒前
行者无疆发布了新的文献求助10
25秒前
星辰大海应助123456采纳,获得10
26秒前
27秒前
逸灵素完成签到 ,获得积分10
29秒前
文文文完成签到,获得积分10
29秒前
Raim发布了新的文献求助10
32秒前
Mea发布了新的文献求助30
33秒前
勤恳完成签到,获得积分10
33秒前
搜集达人应助puppy采纳,获得10
34秒前
金轩完成签到 ,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540614
求助须知:如何正确求助?哪些是违规求助? 3117897
关于积分的说明 9333158
捐赠科研通 2815765
什么是DOI,文献DOI怎么找? 1547752
邀请新用户注册赠送积分活动 721158
科研通“疑难数据库(出版商)”最低求助积分说明 712515