钴
材料科学
自旋电子学
硫化钴
纳米晶
化学气相沉积
硫化物
硫化铁
居里温度
过渡金属
纳米技术
铁磁性
化学工程
催化作用
硫黄
物理化学
冶金
化学
凝聚态物理
电化学
电极
物理
生物化学
工程类
作者
Jimin Jang,Eui-Hoon Jeong,Minwoong Joe,Tobiloba Gabriel Abraham,Younggeun Jang,Jongchan Yoon,Jaegu Song,Zonghoon Lee,Tuson Park,Youngchan Kim,Changgu Lee
出处
期刊:Small
[Wiley]
日期:2024-12-23
标识
DOI:10.1002/smll.202406202
摘要
Abstract Among 2‐dimensional (2D) non‐layered transition‐metal chalcogenides (TMCs), cobalt sulfides are highly interesting because of their diverse structural phases and unique properties. The unique magnetic properties of TMCs have generated significant interest in their potential applications in future spintronic devices. In addition, their high conductivity, large specific surface area, and abundant active sites have attracted attention in the field of catalysis. However, the synthesis of phase‐controllable 2D non‐layered cobalt sulfide nanocrystals remains challenging. In the present study, a method is reported in which ambient‐pressure chemical vapor deposition (APCVD) is used to synthesize 2D non‐layered cobalt sulfide nanocrystals on insulating substrates. By controlling the growth temperature, the transition of nanocrystal phases from pyrite‐structured CoS 2 to cubic Co 3 S 4 and hexagonal CoS is achieved. Magnetotransport studies revealed metallic and ferromagnetic behaviors at temperatures below the Curie temperature for CoS 2 . In addition, electrical measurements of Co 3 S 4 ‐ and CoS‐based devices showed conventional metallic behaviors, including temperature‐ and magnetic field‐dependent ordinary Hall effects. These findings demonstrate the potential of APCVD for synthesizing high‐quality 2D non‐layered cobalt sulfide nanocrystals with controllable phases, paving the way for their application in spintronics and catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI