Machine Learning‐Engineered Nanozyme System for Synergistic Anti‐Tumor Ferroptosis/Apoptosis Therapy

细胞凋亡 自噬 肿瘤微环境 癌症研究 联合疗法 程序性细胞死亡 计算机科学 化学 机器学习 肿瘤细胞 生物 生物信息学 生物化学
作者
Tianliang Li,Bin Cao,Tianhao Su,Lixing Lin,Dong Wang,Xinting Liu,Haoyu Wan,Haiwei Ji,Zi‐Xuan He,Yingying Chen,Lingyan Feng,Tong‐Yi Zhang
出处
期刊:Small [Wiley]
被引量:1
标识
DOI:10.1002/smll.202408750
摘要

Abstract Nanozymes with multienzyme‐like activity have sparked significant interest in anti‐tumor therapy via responding to the tumor microenvironment (TME). However, the consequent induction of protective autophagy substantially compromises the therapeutic efficacy. Here, a targeted nanozyme system (Fe‐Arg‐CDs@ZIF‐8/HAD, FZH) is shown, which enhances synergistic anti‐tumor ferroptosis/apoptosis therapy by leveraging machine learning (ML). A novel ML model, termed the sequential backward Tree‐Classifier for Gaussian Process Regression (TCGPR), is proposed to improve data pattern recognition following the divide‐and‐conquer principle. Based on this, a Bayesian optimization algorithm is employed to select candidates from the extensive search space. Leveraging this fresh material discovery framework, a novel strategy for enhancing nanozyme‐based tumor therapy, has been developed. The results reveal that FZH effectively exerts anti‐tumor effects by sequentially responding to the TME, having a cascade reaction to induce ferroptosis. Moreover, the endogenous elevation of high concentration nitric oxide (NO) serves as a direct mechanism for killing tumor cells while concurrently suppressing the protective autophagy induced by oxidative stress (OS), enhancing synergistic ferroptosis/apoptosis therapy. Overall, a novel strategy for improving nanozyme‐based tumor therapy has been proposed, underlying the integration of ML, experiments, and biological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
瞎闹腾完成签到,获得积分10
2秒前
cugwzr完成签到,获得积分10
2秒前
2秒前
无花果应助威武鸽子采纳,获得10
3秒前
WYF发布了新的文献求助10
3秒前
rosa发布了新的文献求助10
4秒前
4秒前
啊哭发布了新的文献求助10
5秒前
6秒前
malo完成签到,获得积分20
6秒前
愉快发布了新的文献求助10
8秒前
啦啦啦发布了新的文献求助10
8秒前
ninalee完成签到,获得积分10
8秒前
WYF完成签到,获得积分10
9秒前
Steven发布了新的文献求助10
9秒前
魔音甜菜发布了新的文献求助10
10秒前
存慎完成签到 ,获得积分10
13秒前
乌龟完成签到,获得积分10
14秒前
16秒前
LimiT完成签到,获得积分10
18秒前
replay完成签到,获得积分10
18秒前
Steven发布了新的文献求助10
19秒前
愉快完成签到,获得积分10
20秒前
22秒前
23秒前
李健的小迷弟应助fate8680采纳,获得10
26秒前
26秒前
健康的鹰发布了新的文献求助10
27秒前
kytm完成签到,获得积分10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
烟花应助科研通管家采纳,获得10
28秒前
Newt应助科研通管家采纳,获得10
28秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
英姑应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
stt1011完成签到,获得积分10
31秒前
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075