Machine Learning‐Engineered Nanozyme System for Synergistic Anti‐Tumor Ferroptosis/Apoptosis Therapy

细胞凋亡 自噬 肿瘤微环境 癌症研究 联合疗法 程序性细胞死亡 计算机科学 化学 机器学习 肿瘤细胞 生物 生物信息学 生物化学
作者
Tianliang Li,Bin Cao,Tianhao Su,Lixing Lin,Dong Wang,Xinting Liu,Haoyu Wan,Haiwei Ji,Zi‐Xuan He,Yingying Chen,Lingyan Feng,Tong‐Yi Zhang
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202408750
摘要

Abstract Nanozymes with multienzyme‐like activity have sparked significant interest in anti‐tumor therapy via responding to the tumor microenvironment (TME). However, the consequent induction of protective autophagy substantially compromises the therapeutic efficacy. Here, a targeted nanozyme system (Fe‐Arg‐CDs@ZIF‐8/HAD, FZH) is shown, which enhances synergistic anti‐tumor ferroptosis/apoptosis therapy by leveraging machine learning (ML). A novel ML model, termed the sequential backward Tree‐Classifier for Gaussian Process Regression (TCGPR), is proposed to improve data pattern recognition following the divide‐and‐conquer principle. Based on this, a Bayesian optimization algorithm is employed to select candidates from the extensive search space. Leveraging this fresh material discovery framework, a novel strategy for enhancing nanozyme‐based tumor therapy, has been developed. The results reveal that FZH effectively exerts anti‐tumor effects by sequentially responding to the TME, having a cascade reaction to induce ferroptosis. Moreover, the endogenous elevation of high concentration nitric oxide (NO) serves as a direct mechanism for killing tumor cells while concurrently suppressing the protective autophagy induced by oxidative stress (OS), enhancing synergistic ferroptosis/apoptosis therapy. Overall, a novel strategy for improving nanozyme‐based tumor therapy has been proposed, underlying the integration of ML, experiments, and biological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助cc采纳,获得10
刚刚
刚刚
刚刚
spray完成签到,获得积分10
1秒前
范范完成签到,获得积分20
1秒前
少年发布了新的文献求助10
1秒前
大力鱼发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
shilong.yang完成签到,获得积分10
3秒前
jy发布了新的文献求助10
4秒前
5秒前
5秒前
梦里发布了新的文献求助10
6秒前
falcon完成签到 ,获得积分10
7秒前
劈里啪啦发布了新的文献求助10
8秒前
耿强发布了新的文献求助10
8秒前
科研通AI5应助坚强的樱采纳,获得10
8秒前
陈杰发布了新的文献求助10
8秒前
nozero完成签到,获得积分10
10秒前
澜生发布了新的文献求助10
11秒前
在水一方应助惠惠采纳,获得10
11秒前
852应助zZ采纳,获得10
11秒前
小马甲应助陌路采纳,获得10
12秒前
1335804518完成签到 ,获得积分10
13秒前
13秒前
甜甜醉波完成签到,获得积分10
13秒前
科研通AI2S应助卷卷王采纳,获得10
14秒前
可爱的函函应助梦里采纳,获得10
14秒前
沐晴完成签到,获得积分10
15秒前
入夏完成签到,获得积分10
15秒前
15秒前
15秒前
苏州小北发布了新的文献求助10
16秒前
16秒前
snail完成签到,获得积分10
17秒前
劈里啪啦完成签到,获得积分10
17秒前
wanci应助Jasmine采纳,获得10
18秒前
aoxiangcaizi12完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794