Development and Validation of a Deep Learning System to Differentiate HER2‐Zero, HER2‐Low, and HER2‐Positive Breast Cancer Based on Dynamic Contrast‐Enhanced MRI

人工智能 分割 接收机工作特性 深度学习 乳房磁振造影 乳腺癌 计算机科学 动态增强MRI 医学 模式识别(心理学) 磁共振成像 癌症 算法 机器学习 放射科 乳腺摄影术 内科学
作者
Yi Dai,Chun Lian,Zhuo Zhang,Jing Gao,Fan Lin,Ziyin Li,Qi Wang,Tongpeng Chu,Dilinuer Aishanjiang,Meiying Chen,Ximing Wang,Guanxun Cheng,Rong Huang,Jianjun Dong,Haicheng Zhang,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:2
标识
DOI:10.1002/jmri.29670
摘要

Background Previous studies explored MRI‐based radiomic features for differentiating between human epidermal growth factor receptor 2 (HER2)‐zero, HER2‐low, and HER2‐positive breast cancer, but deep learning's effectiveness is uncertain. Purpose This study aims to develop and validate a deep learning system using dynamic contrast‐enhanced MRI (DCE‐MRI) for automated tumor segmentation and classification of HER2‐zero, HER2‐low, and HER2‐positive statuses. Study Type Retrospective. Population One thousand two hundred ninety‐four breast cancer patients from three centers who underwent DCE‐MRI before surgery were included in the study (52 ± 11 years, 811/204/279 for training/internal testing/external testing). Field Strength/Sequence 3 T scanners, using T1‐weighted 3D fast spoiled gradient‐echo sequence, T1‐weighted 3D enhanced fast gradient‐echo sequence and T1‐weighted turbo field echo sequence. Assessment An automated model segmented tumors utilizing DCE‐MRI data, followed by a deep learning models (ResNetGN) trained to classify HER2 statuses. Three models were developed to distinguish HER2‐zero, HER2‐low, and HER2‐positive from their respective non‐HER2 categories. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of the model. Evaluation of the model performances for HER2 statuses involved receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC), accuracy, sensitivity, and specificity. The P ‐values <0.05 were considered statistically significant. Results The automatic segmentation network achieved DSC values of 0.85 to 0.90 compared to the manual segmentation across different sets. The deep learning models using ResNetGN achieved AUCs of 0.782, 0.776, and 0.768 in differentiating HER2‐zero from others in the training, internal test, and external test sets, respectively. Similarly, AUCs of 0.820, 0.813, and 0.787 were achieved for HER2‐low vs. others, and 0.792, 0.745, and 0.781 for HER2‐positive vs. others, respectively. Data Conclusion The proposed DCE‐MRI‐based deep learning system may have the potential to preoperatively distinct HER2 expressions of breast cancers with therapeutic implications. Evidence Level 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞凌波发布了新的文献求助10
3秒前
桐桐应助幸福的杨小夕采纳,获得10
8秒前
韩麒嘉完成签到 ,获得积分10
10秒前
聪慧的凝海完成签到 ,获得积分0
19秒前
19秒前
wwb发布了新的文献求助10
22秒前
phil完成签到 ,获得积分10
22秒前
30秒前
高高菠萝完成签到 ,获得积分10
30秒前
滴滴滴完成签到 ,获得积分10
30秒前
yangsi完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
37秒前
酷炫葵阴发布了新的文献求助10
42秒前
ORANGE完成签到,获得积分10
44秒前
思源应助松松采纳,获得20
48秒前
共享精神应助酷炫葵阴采纳,获得10
50秒前
丝丢皮得完成签到 ,获得积分10
51秒前
52秒前
xfy完成签到,获得积分10
56秒前
阳炎完成签到,获得积分10
58秒前
行云流水完成签到,获得积分10
59秒前
1分钟前
冷酷尔琴发布了新的文献求助10
1分钟前
青水完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
冷酷尔琴完成签到,获得积分10
1分钟前
onevip完成签到,获得积分0
1分钟前
小莫完成签到 ,获得积分10
1分钟前
1分钟前
theseus完成签到,获得积分10
1分钟前
胡楠完成签到,获得积分10
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
李振博完成签到 ,获得积分10
1分钟前
1分钟前
雪妮完成签到 ,获得积分10
1分钟前
松松发布了新的文献求助20
1分钟前
1分钟前
iwsaml完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022