Development and Validation of a Deep Learning System to Differentiate HER2‐Zero, HER2‐Low, and HER2‐Positive Breast Cancer Based on Dynamic Contrast‐Enhanced MRI

人工智能 分割 接收机工作特性 深度学习 乳房磁振造影 乳腺癌 计算机科学 动态增强MRI 医学 模式识别(心理学) 磁共振成像 癌症 算法 机器学习 放射科 乳腺摄影术 内科学
作者
Yi Dai,Chun Lian,Zhuo Zhang,Jing Gao,Fan Lin,Ziyin Li,Qi Wang,Tongpeng Chu,Dilinuer Aishanjiang,Meiying Chen,Ximing Wang,Guanxun Cheng,Rong Huang,Jianjun Dong,Haicheng Zhang,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:2
标识
DOI:10.1002/jmri.29670
摘要

Background Previous studies explored MRI‐based radiomic features for differentiating between human epidermal growth factor receptor 2 (HER2)‐zero, HER2‐low, and HER2‐positive breast cancer, but deep learning's effectiveness is uncertain. Purpose This study aims to develop and validate a deep learning system using dynamic contrast‐enhanced MRI (DCE‐MRI) for automated tumor segmentation and classification of HER2‐zero, HER2‐low, and HER2‐positive statuses. Study Type Retrospective. Population One thousand two hundred ninety‐four breast cancer patients from three centers who underwent DCE‐MRI before surgery were included in the study (52 ± 11 years, 811/204/279 for training/internal testing/external testing). Field Strength/Sequence 3 T scanners, using T1‐weighted 3D fast spoiled gradient‐echo sequence, T1‐weighted 3D enhanced fast gradient‐echo sequence and T1‐weighted turbo field echo sequence. Assessment An automated model segmented tumors utilizing DCE‐MRI data, followed by a deep learning models (ResNetGN) trained to classify HER2 statuses. Three models were developed to distinguish HER2‐zero, HER2‐low, and HER2‐positive from their respective non‐HER2 categories. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of the model. Evaluation of the model performances for HER2 statuses involved receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC), accuracy, sensitivity, and specificity. The P ‐values <0.05 were considered statistically significant. Results The automatic segmentation network achieved DSC values of 0.85 to 0.90 compared to the manual segmentation across different sets. The deep learning models using ResNetGN achieved AUCs of 0.782, 0.776, and 0.768 in differentiating HER2‐zero from others in the training, internal test, and external test sets, respectively. Similarly, AUCs of 0.820, 0.813, and 0.787 were achieved for HER2‐low vs. others, and 0.792, 0.745, and 0.781 for HER2‐positive vs. others, respectively. Data Conclusion The proposed DCE‐MRI‐based deep learning system may have the potential to preoperatively distinct HER2 expressions of breast cancers with therapeutic implications. Evidence Level 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
廉凌波发布了新的文献求助10
2秒前
勤奋梨愁发布了新的文献求助10
3秒前
3秒前
潘善若发布了新的文献求助10
5秒前
caicai完成签到,获得积分10
6秒前
CodeCraft应助廉凌波采纳,获得10
7秒前
9秒前
仁爱水之完成签到 ,获得积分10
9秒前
丫丫完成签到,获得积分10
11秒前
11秒前
11秒前
prime发布了新的文献求助10
12秒前
雨过天晴发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
天天快乐应助玛卡巴卡采纳,获得30
15秒前
xiaohu完成签到,获得积分10
15秒前
zm发布了新的文献求助10
17秒前
温暖的冰菱关注了科研通微信公众号
17秒前
程程发布了新的文献求助10
17秒前
乖猫要努力应助感动黄豆采纳,获得10
18秒前
潘善若发布了新的文献求助10
20秒前
anna发布了新的文献求助10
21秒前
22秒前
充电宝应助momo采纳,获得10
22秒前
勤奋梨愁完成签到,获得积分10
23秒前
summer完成签到,获得积分10
23秒前
24秒前
深情安青应助程程采纳,获得10
26秒前
张雯思发布了新的文献求助10
26秒前
格格完成签到 ,获得积分10
29秒前
29秒前
Hello应助下一秒采纳,获得10
32秒前
天天快乐应助科研通管家采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
桐桐应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136