Development and Validation of a Deep Learning System to Differentiate HER2‐Zero, HER2‐Low, and HER2‐Positive Breast Cancer Based on Dynamic Contrast‐Enhanced MRI

人工智能 分割 接收机工作特性 深度学习 乳房磁振造影 乳腺癌 计算机科学 动态增强MRI 医学 模式识别(心理学) 磁共振成像 癌症 算法 机器学习 放射科 乳腺摄影术 内科学
作者
Yi Dai,Chun Lian,Zhuo Zhang,Jing Wang,Fan Lin,Ziyin Li,Sheng Wang,Tongpeng Chu,Dilinuer Aishanjiang,Meiying Chen,Ximing Wang,Guanxun Cheng,Rong Huang,Jianjun Dong,Haicheng Zhang,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29670
摘要

Background Previous studies explored MRI‐based radiomic features for differentiating between human epidermal growth factor receptor 2 (HER2)‐zero, HER2‐low, and HER2‐positive breast cancer, but deep learning's effectiveness is uncertain. Purpose This study aims to develop and validate a deep learning system using dynamic contrast‐enhanced MRI (DCE‐MRI) for automated tumor segmentation and classification of HER2‐zero, HER2‐low, and HER2‐positive statuses. Study Type Retrospective. Population One thousand two hundred ninety‐four breast cancer patients from three centers who underwent DCE‐MRI before surgery were included in the study (52 ± 11 years, 811/204/279 for training/internal testing/external testing). Field Strength/Sequence 3 T scanners, using T1‐weighted 3D fast spoiled gradient‐echo sequence, T1‐weighted 3D enhanced fast gradient‐echo sequence and T1‐weighted turbo field echo sequence. Assessment An automated model segmented tumors utilizing DCE‐MRI data, followed by a deep learning models (ResNetGN) trained to classify HER2 statuses. Three models were developed to distinguish HER2‐zero, HER2‐low, and HER2‐positive from their respective non‐HER2 categories. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of the model. Evaluation of the model performances for HER2 statuses involved receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC), accuracy, sensitivity, and specificity. The P ‐values <0.05 were considered statistically significant. Results The automatic segmentation network achieved DSC values of 0.85 to 0.90 compared to the manual segmentation across different sets. The deep learning models using ResNetGN achieved AUCs of 0.782, 0.776, and 0.768 in differentiating HER2‐zero from others in the training, internal test, and external test sets, respectively. Similarly, AUCs of 0.820, 0.813, and 0.787 were achieved for HER2‐low vs. others, and 0.792, 0.745, and 0.781 for HER2‐positive vs. others, respectively. Data Conclusion The proposed DCE‐MRI‐based deep learning system may have the potential to preoperatively distinct HER2 expressions of breast cancers with therapeutic implications. Evidence Level 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fan发布了新的文献求助10
1秒前
发财发布了新的文献求助10
2秒前
虞剑完成签到,获得积分10
4秒前
平常的纹完成签到,获得积分10
5秒前
科研通AI2S应助在水一方采纳,获得10
8秒前
9秒前
虞剑发布了新的文献求助10
12秒前
12秒前
13秒前
可耐的锦程完成签到,获得积分10
14秒前
dengyan完成签到,获得积分10
15秒前
ming123ah完成签到,获得积分10
15秒前
594778089发布了新的文献求助10
18秒前
老实易蓉完成签到,获得积分10
20秒前
鄂海菡完成签到,获得积分0
22秒前
在水一方重新开启了TTw文献应助
23秒前
欧拉不拉完成签到,获得积分10
25秒前
华仔完成签到,获得积分10
25秒前
25秒前
李爱国应助佟韩采纳,获得10
25秒前
28秒前
霸气的惜寒完成签到,获得积分10
29秒前
宁天问发布了新的文献求助10
29秒前
30秒前
传奇3应助ZAO采纳,获得10
30秒前
31秒前
32秒前
34秒前
hzl完成签到,获得积分10
35秒前
35秒前
桐桐应助sansan采纳,获得30
35秒前
Wfmmm完成签到,获得积分10
36秒前
夏侯德东发布了新的文献求助30
36秒前
值雨发布了新的文献求助30
36秒前
NeuroWhite完成签到,获得积分10
37秒前
粗犷的灵松完成签到 ,获得积分10
37秒前
38秒前
54489完成签到,获得积分10
39秒前
倪倪发布了新的文献求助10
39秒前
kklkimo发布了新的文献求助10
40秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240722
求助须知:如何正确求助?哪些是违规求助? 2885466
关于积分的说明 8238658
捐赠科研通 2553893
什么是DOI,文献DOI怎么找? 1382010
科研通“疑难数据库(出版商)”最低求助积分说明 649440
邀请新用户注册赠送积分活动 625079