The Role of Solvent in Carbon Quantum Dot Synthesis on the Performance of MoS2 Nanosheet/Carbon Quantum Dot Heterostructures as Electrocatalysts for the Hydrogen Evolution Reaction

纳米片 量子点 碳量子点 材料科学 碳纤维 异质结 纳米技术 溶剂 化学工程 化学 复合数 光电子学 有机化学 复合材料 工程类
作者
Fani Rahayu Hidayah Rayanisaputri,Didik Aryanto,Lazar Bijelić,Arturo Susarrey‐Arce,Francisco Ruiz‐Zepeda,Ferry Anggoro Ardy Nugroho,Vivi Fauzia
出处
期刊:ACS applied nano materials [American Chemical Society]
标识
DOI:10.1021/acsanm.4c06067
摘要

This study investigates the effect of different solvents used in the synthesis of carbon quantum dots (CQDs) on the electrocatalytic performance of MoS2/CQD heterostructures for the hydrogen evolution reaction (HER). While previous research focused on CQDs synthesized with deionized water, little attention has been given to the influence of other solvents on CQD electrocatalytic behavior. To address this, we synthesized MoS2 on 3D carbon cloths via a hydrothermal method and subsequently incorporated CQDs synthesized using deionized water, glycerol, and dimethylformamide (DMF). The choice of solvent significantly impacts their morphology, crystallinity, surface, and electrochemical properties. In particular, MoS2 nanosheets became smaller with increased disordered structures and defect sites, particularly sulfur vacancies. Among the heterostructures, MoS2/CQDs-Glycerol showed superior performance, with an onset overpotential of 130 mV and Tafel slope of 53 mV/dec at 10 mA/cm2, outperforming MoS2/CQDs-DI (149 mV, 68 mV/dec) and MoS2/CQDs-DMF (185 mV, 106 mV/dec). The enhanced performance of MoS2/CQDs-Glycerol is attributed to its larger active surface area (Cdl of 228.7 mF/cm2) and lower charge transfer resistance (Rct of 2.25 Ω), which may be due to the formation of more Mo–S edges on the vertical plane, serving as active sites. This study demonstrates that glycerol is the most effective solvent in CQD synthesis for enhancing HER performance by improving the morphology, surface properties, and charge transfer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桃酥酥完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
络桵发布了新的文献求助10
1秒前
song24517完成签到,获得积分10
2秒前
2秒前
2秒前
CipherSage应助dypdyp采纳,获得10
3秒前
丘比特应助马小跳采纳,获得10
3秒前
yn完成签到,获得积分10
3秒前
Survive完成签到,获得积分10
4秒前
hwq关闭了hwq文献求助
5秒前
6秒前
沉默石头发布了新的文献求助30
6秒前
MAOJCFK发布了新的文献求助10
6秒前
6秒前
Jasper应助药丸采纳,获得30
7秒前
优雅涔雨发布了新的文献求助10
7秒前
烟花应助张成采纳,获得10
7秒前
rorolinlin完成签到,获得积分10
7秒前
8秒前
8秒前
ziyan完成签到 ,获得积分10
9秒前
CipherSage应助柠檬精翠翠采纳,获得10
9秒前
WUHUDASM发布了新的文献求助10
9秒前
英姑应助科研dog采纳,获得10
9秒前
栗子完成签到,获得积分10
9秒前
CL完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
科研通AI2S应助婧婧采纳,获得30
12秒前
12秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Nanostructured Titanium Dioxide Materials 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469346
求助须知:如何正确求助?哪些是违规求助? 3062465
关于积分的说明 9079074
捐赠科研通 2752760
什么是DOI,文献DOI怎么找? 1510621
科研通“疑难数据库(出版商)”最低求助积分说明 697925
邀请新用户注册赠送积分活动 697866