Leveraging overfitting for good - Two-Step Deep Image Prior Model For Seismic Denoising

过度拟合 计算机科学 图像(数学) 降噪 图像去噪 人工智能 噪音(视频) 模式识别(心理学) 地质学 计算机视觉 人工神经网络
作者
Yapo Abolé Serge Innocent Oboué,Yunfeng Chen,Zhihui Guo,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-67
标识
DOI:10.1190/geo2024-0236.1
摘要

Accurate separation of signal and noise constitutes a fundamental prerequisite for achieving high-resolution seismic imaging. A notable recent advancement in this domain is the Deep Image Prior (DIP), an unsupervised deep learning method leveraging deep neural networks (DNNs). The success of this approach lies in the adoption of autoencoders that enables the adaptive extraction of high-fidelity data features. However, establishing an optimal balance between noise suppression and signal preservation remains a non-trivial challenge for DIP-based seismic denoising methods, which is affected by the potential issue of overfitting. This arises from the inappropriate selection of a network architecture and the corresponding hyperparameters, especially the number of training epochs, which strongly influence the learning capacity and feature extraction capabilities of the model. In response to this challenge, we introduce Two-Step DIP (TSDIP), a novel denoising method that exploits overfitting to enhance seismic data quality. In the initial stage, the proposed DNNs are intentionally trained to overfit by effectively attenuating high-frequency noise from the input data. Subsequently, the proposed DNNs are employed iteratively to suppress any residual noise in the newly processed data without damaging useful signal. The overfitting in the first step helps precondition the data to be at a lower noise level while preserving as much as fine-scale features in the signal. To employ an optimal balance, we carefully determine an ideal number of epochs, which is consistently applied in both denoising steps. To assess the effectiveness of the TSDIP method, we present the test results derived from 3D synthetic and field seismic datasets. Our analysis indicates that TSDIP effectively reduces strong noise while preserving key seismic details through the use of overfitting.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助凯凯采纳,获得10
刚刚
4秒前
5秒前
是琳不是林完成签到,获得积分10
5秒前
RKK发布了新的文献求助10
6秒前
Longy完成签到,获得积分10
7秒前
Longy发布了新的文献求助10
10秒前
想飞的猪发布了新的文献求助10
11秒前
12秒前
渔舟唱晚应助缓慢的衫采纳,获得10
12秒前
13秒前
汉堡包应助sci帝国采纳,获得10
16秒前
凯凯发布了新的文献求助10
17秒前
司徒呀完成签到 ,获得积分10
18秒前
Pupoo发布了新的文献求助10
18秒前
19秒前
雪白的雪发布了新的文献求助10
19秒前
22秒前
23秒前
wke发布了新的文献求助10
24秒前
25秒前
洁净的士晋完成签到,获得积分10
26秒前
sci帝国发布了新的文献求助10
29秒前
Henry应助凯凯采纳,获得10
29秒前
科研通AI2S应助吞吞采纳,获得10
33秒前
34秒前
sci帝国完成签到,获得积分10
37秒前
小丑鱼发布了新的文献求助10
39秒前
虚心的秋秋完成签到,获得积分10
39秒前
VDC应助科研通管家采纳,获得30
40秒前
Owen应助科研通管家采纳,获得10
40秒前
李健应助凡凡的凡凡采纳,获得20
41秒前
田様应助雪白的雪采纳,获得30
45秒前
小丑鱼完成签到,获得积分10
45秒前
溜溜梅发布了新的文献求助10
46秒前
ru完成签到 ,获得积分10
48秒前
科研通AI2S应助司徒呀采纳,获得10
51秒前
喜哈哈发布了新的文献求助10
51秒前
贪玩亿先完成签到 ,获得积分10
57秒前
59秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376380
求助须知:如何正确求助?哪些是违规求助? 2992511
关于积分的说明 8751096
捐赠科研通 2676850
什么是DOI,文献DOI怎么找? 1466249
科研通“疑难数据库(出版商)”最低求助积分说明 678240
邀请新用户注册赠送积分活动 669843