Ground-Motion Modeling Using MyShake Smartphone Peak Acceleration Data

加速度 大地测量学 运动(物理) 地质学 计算机科学 声学 物理 人工智能 经典力学
作者
Savvas Marcou,R. M. Allen,Norman A. Abrahamson,Chih‐Hsuan Sung
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
标识
DOI:10.1785/0120240209
摘要

ABSTRACT In the field of ground-motion modeling, the availability of densely sampled ground-motion data is becoming key to mapping repeatable source, path, and site effects to enable ground-motion models (GMMs) to more accurately predict shaking from future earthquakes. This is particularly important because the field is moving toward nonergodic GMMs with spatially variable coefficients. To achieve the level of sampling required, the addition of non-instrumental data collected at very high spatial resolution, like felt intensity data or smartphone data, could prove essential. The predictive power of this nontraditional data for free-field ground motion needs to be tested before these data are used. In this work, we present a new database of over 1600 ground-shaking waveforms collected between 2019 and 2023 by the MyShake smartphone app, which delivers earthquake early warning messages to users on the U.S. West Coast. We develop a GMM, MyShake GMM, for peak smartphone-recorded accelerations in 3≤M≤5.5 earthquakes recorded at short (<50 km) distances. We compare our model with free-field GMMs and show a similar geometric decay and a close match in predicted amplitudes for short-period spectral accelerations (SAs). We use residual correlation analysis to show that MyShake GMM residuals have a positive correlation with free-field residuals, with correlation coefficients of around 0.4 for peak ground acceleration, velocity, and short-period SA, similar to correlations previously reported between felt intensity and free-field data. This illustrates the potential that densely sampled smartphone ground-shaking data has in identifying repeatable free-field ground-motion effects for various ground-motion modeling applications. These could potentially include highly location-specific assessments of site response, ground-motion interpolation schemes like ShakeMap, or validating outputs from nonergodic, spatially variable coefficient GMMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔雀翎完成签到,获得积分10
刚刚
mushini发布了新的文献求助10
1秒前
1秒前
泉水丁冬2023完成签到,获得积分10
1秒前
采桑子发布了新的文献求助10
2秒前
温婉的笑阳完成签到,获得积分10
2秒前
慕辰完成签到,获得积分10
2秒前
远看寒山完成签到,获得积分10
3秒前
Sencetich完成签到 ,获得积分10
3秒前
wyy完成签到,获得积分20
3秒前
3秒前
3秒前
X先生发布了新的文献求助10
3秒前
3秒前
大方向真完成签到,获得积分10
4秒前
4秒前
wang发布了新的文献求助10
4秒前
Windycityguy发布了新的文献求助10
5秒前
萌萌完成签到,获得积分10
5秒前
浮云完成签到,获得积分10
5秒前
内向一笑完成签到 ,获得积分10
6秒前
农学博士后完成签到,获得积分10
6秒前
安详的书本完成签到 ,获得积分10
6秒前
绿洲完成签到,获得积分10
6秒前
goldfish完成签到,获得积分10
7秒前
领导范儿应助zj采纳,获得10
7秒前
港岛妹妹应助wyy采纳,获得20
8秒前
9秒前
七七发布了新的文献求助10
9秒前
Lovely_pan完成签到,获得积分10
10秒前
汉朝老橙完成签到,获得积分10
10秒前
采桑子完成签到,获得积分20
10秒前
lizixiang完成签到,获得积分10
10秒前
小何同学发布了新的文献求助30
11秒前
残忆完成签到 ,获得积分10
11秒前
星辰大海应助飘来一朵云采纳,获得10
12秒前
一一完成签到 ,获得积分0
12秒前
13秒前
bu发布了新的文献求助10
13秒前
勤奋西牛完成签到,获得积分10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249002
求助须知:如何正确求助?哪些是违规求助? 2892380
关于积分的说明 8271185
捐赠科研通 2560658
什么是DOI,文献DOI怎么找? 1389175
科研通“疑难数据库(出版商)”最低求助积分说明 651006
邀请新用户注册赠送积分活动 627869