Ground-Motion Modeling Using MyShake Smartphone Peak Acceleration Data

加速度 大地测量学 运动(物理) 地质学 计算机科学 声学 物理 人工智能 经典力学
作者
Savvas Marcou,R. M. Allen,Norman A. Abrahamson,Chih‐Hsuan Sung
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
标识
DOI:10.1785/0120240209
摘要

ABSTRACT In the field of ground-motion modeling, the availability of densely sampled ground-motion data is becoming key to mapping repeatable source, path, and site effects to enable ground-motion models (GMMs) to more accurately predict shaking from future earthquakes. This is particularly important because the field is moving toward nonergodic GMMs with spatially variable coefficients. To achieve the level of sampling required, the addition of non-instrumental data collected at very high spatial resolution, like felt intensity data or smartphone data, could prove essential. The predictive power of this nontraditional data for free-field ground motion needs to be tested before these data are used. In this work, we present a new database of over 1600 ground-shaking waveforms collected between 2019 and 2023 by the MyShake smartphone app, which delivers earthquake early warning messages to users on the U.S. West Coast. We develop a GMM, MyShake GMM, for peak smartphone-recorded accelerations in 3≤M≤5.5 earthquakes recorded at short (<50 km) distances. We compare our model with free-field GMMs and show a similar geometric decay and a close match in predicted amplitudes for short-period spectral accelerations (SAs). We use residual correlation analysis to show that MyShake GMM residuals have a positive correlation with free-field residuals, with correlation coefficients of around 0.4 for peak ground acceleration, velocity, and short-period SA, similar to correlations previously reported between felt intensity and free-field data. This illustrates the potential that densely sampled smartphone ground-shaking data has in identifying repeatable free-field ground-motion effects for various ground-motion modeling applications. These could potentially include highly location-specific assessments of site response, ground-motion interpolation schemes like ShakeMap, or validating outputs from nonergodic, spatially variable coefficient GMMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福冰珍发布了新的文献求助30
1秒前
kgy发布了新的文献求助10
2秒前
苏木完成签到,获得积分10
3秒前
山有木兮木有枝完成签到,获得积分10
6秒前
8秒前
打打应助苏木采纳,获得10
8秒前
cquank完成签到,获得积分10
9秒前
ljx关注了科研通微信公众号
10秒前
10秒前
科研小白完成签到,获得积分10
13秒前
GGBAO发布了新的文献求助10
13秒前
14秒前
16秒前
燕麦嫁牛奶完成签到 ,获得积分10
16秒前
pl656完成签到,获得积分10
19秒前
萧水白应助轻松灵薇采纳,获得10
20秒前
21秒前
shinn发布了新的文献求助50
22秒前
尽如完成签到,获得积分10
22秒前
24秒前
苏木发布了新的文献求助10
25秒前
魔幻海豚发布了新的文献求助10
26秒前
orixero应助陈小芬采纳,获得10
29秒前
29秒前
30秒前
hhh发布了新的文献求助10
31秒前
ljx发布了新的文献求助10
32秒前
33秒前
魔幻海豚完成签到,获得积分10
33秒前
小二郎应助ffffffflzx666采纳,获得10
34秒前
认真飞瑶发布了新的文献求助10
36秒前
风清扬应助wf0806采纳,获得10
37秒前
Zyhaou发布了新的文献求助10
38秒前
凉小天完成签到 ,获得积分10
39秒前
40秒前
无限凛完成签到 ,获得积分10
42秒前
DirectorO完成签到,获得积分10
44秒前
查理完成签到,获得积分10
44秒前
0610完成签到,获得积分10
44秒前
鱼儿乐园完成签到 ,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602