Machine Learning‐Enabled Drug‐Induced Toxicity Prediction

毒性 计算机科学 药物毒性 水准点(测量) 药物发现 药品 机器学习 人工智能 药理学 生物信息学 医学 生物 内科学 大地测量学 地理
作者
Changsen Bai,Lianlian Wu,Ruijiang Li,Yang Cao,Song He,Xiaochen Bo
出处
期刊:Advanced Science [Wiley]
被引量:1
标识
DOI:10.1002/advs.202413405
摘要

Abstract Unexpected toxicity has become a significant obstacle to drug candidate development, accounting for 30% of drug discovery failures. Traditional toxicity assessment through animal testing is costly and time‐consuming. Big data and artificial intelligence (AI), especially machine learning (ML), are robustly contributing to innovation and progress in toxicology research. However, the optimal AI model for different types of toxicity usually varies, making it essential to conduct comparative analyses of AI methods across toxicity domains. The diverse data sources also pose challenges for researchers focusing on specific toxicity studies. In this review, 10 categories of drug‐induced toxicity is examined, summarizing the characteristics and applicable ML models, including both predictive and interpretable algorithms, striking a balance between breadth and depth. Key databases and tools used in toxicity prediction are also highlighted, including toxicology, chemical, multi‐omics, and benchmark databases, organized by their focus and function to clarify their roles in drug‐induced toxicity prediction. Finally, strategies to turn challenges into opportunities are analyzed and discussed. This review may provide researchers with a valuable reference for understanding and utilizing the available resources to bridge prediction and mechanistic insights, and further advance the application of ML in drugs‐induced toxicity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Qingcyx完成签到,获得积分10
刚刚
刚刚
乘风文月完成签到,获得积分10
刚刚
libin完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
无敌通完成签到,获得积分10
2秒前
Ll_l完成签到,获得积分10
3秒前
3秒前
3秒前
科研宇完成签到,获得积分10
3秒前
袁同学完成签到,获得积分10
3秒前
银银完成签到,获得积分10
3秒前
3秒前
葱油饼完成签到,获得积分10
3秒前
英姑应助zyy采纳,获得10
3秒前
3秒前
球状闪电发布了新的文献求助10
4秒前
Alvin发布了新的文献求助10
4秒前
4秒前
Andrew02完成签到,获得积分10
4秒前
htmy完成签到,获得积分10
5秒前
yyyfff应助小白科研采纳,获得10
5秒前
将来完成签到,获得积分10
6秒前
吃的饭广泛应助刘松采纳,获得10
6秒前
吃的饭广泛应助刘松采纳,获得10
6秒前
吃的饭广泛应助刘松采纳,获得10
6秒前
追梦的山里娃完成签到,获得积分10
6秒前
活泼洙完成签到,获得积分10
6秒前
6秒前
AAA电池批发顾总完成签到,获得积分10
6秒前
constance完成签到,获得积分10
6秒前
9℃完成签到 ,获得积分10
7秒前
九转科研蛊完成签到,获得积分10
7秒前
周周发布了新的文献求助10
7秒前
张宇发布了新的文献求助10
7秒前
7秒前
libin发布了新的文献求助10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968771
求助须知:如何正确求助?哪些是违规求助? 3513646
关于积分的说明 11169065
捐赠科研通 3249011
什么是DOI,文献DOI怎么找? 1794589
邀请新用户注册赠送积分活动 875236
科研通“疑难数据库(出版商)”最低求助积分说明 804740