Multiview Spatio-Temporal Learning With Dual Dynamic Graph Convolutional Networks for Rumor Detection

谣言 计算机科学 图形 对偶(语法数字) 人工智能 卷积神经网络 图论 机器学习 理论计算机科学 数学 艺术 公共关系 文学类 组合数学 政治学
作者
Xuejian Huang,Tinghuai Ma,Wei Liang Jin,Huan Rong,Li Jia,Bin Yang,Xintong Xie
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tcss.2024.3520105
摘要

Detecting rumors on social networks is increasingly important due to their rapid dissemination and negative societal impact. The structural characteristics of propagation play a crucial role in rumor detection. However, most current graph neural network-based methods focus on spatial structural features, overlooking the temporal structural features or exploring spatio-temporal features from a single perspective, failing to comprehensively and finely learn representations of dynamic events. Therefore, this article proposes a multiview spatio-temporal feature learning method based on dual dynamic graph convolutional networks. First, dynamic graphs of information propagation and user interactions are constructed based on retweet and reply relationships. Second, BERT is utilized to extract semantic features of content, serving as initial node representations for the information propagation graph, while social features of users serve as initial node representations for the user interaction graph. Subsequently, dual graph convolutional networks are employed to learn representations of graph structures at different time steps. Finally, a time fusion unit based on cross-attention is devised to facilitate the learning and fusion of the spatio-temporal features from the two dynamic graphs. Experimental results on two real-world social network rumor datasets, PHEME and Weibo, demonstrate that our method outperforms all compared baseline methods and enables early detection of rumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qiiiiii发布了新的文献求助30
1秒前
王佳琪完成签到,获得积分10
1秒前
Calvin-funsom完成签到,获得积分10
1秒前
2秒前
2秒前
古哉发布了新的文献求助10
3秒前
SciGPT应助冒险寻羊采纳,获得30
4秒前
慕青应助gao123采纳,获得10
5秒前
5秒前
5秒前
6秒前
利利是是应助Selenge采纳,获得10
6秒前
菠萝吹雪完成签到,获得积分10
6秒前
7秒前
8秒前
sg发布了新的文献求助20
9秒前
虚幻采枫发布了新的文献求助20
10秒前
10秒前
drleslie完成签到 ,获得积分10
11秒前
嘎嘎楽发布了新的文献求助10
11秒前
烟花应助刘不器采纳,获得10
11秒前
12秒前
传奇3应助健忘可愁采纳,获得30
12秒前
12秒前
13秒前
orixero应助lzcnextdoor采纳,获得10
14秒前
14秒前
Sean完成签到,获得积分10
14秒前
15秒前
ren完成签到,获得积分10
17秒前
FashionBoy应助自然的人杰采纳,获得10
17秒前
19秒前
所所应助Wuin采纳,获得10
19秒前
wyy发布了新的文献求助10
20秒前
Estrella发布了新的文献求助10
22秒前
深情安青应助123采纳,获得10
23秒前
忧虑的盼望完成签到,获得积分10
24秒前
天天快乐应助王三一采纳,获得10
24秒前
无花果应助yy采纳,获得30
24秒前
无花果应助ddl采纳,获得10
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488940
求助须知:如何正确求助?哪些是违规求助? 3076437
关于积分的说明 9145315
捐赠科研通 2768689
什么是DOI,文献DOI怎么找? 1519340
邀请新用户注册赠送积分活动 703765
科研通“疑难数据库(出版商)”最低求助积分说明 702009