已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Applications of artificial intelligence for chemical analysis and monitoring of pharmaceutical and personal care products in water and wastewater: A review

废水 个人护理 药品和个人护理产品的环境影响 水污染物 生化工程 环境科学 废物管理 工程类 化学 环境工程 环境化学 医学 家庭医学
作者
Babak Kavianpour,Farzad Piadeh,Mohammad Gheibi,Atiyeh Ardakanian,Kourosh Behzadian,Luiza C. Campos
出处
期刊:Chemosphere [Elsevier]
卷期号:368: 143692-143692
标识
DOI:10.1016/j.chemosphere.2024.143692
摘要

Specifying and interpreting the occurrence of emerging pollutants is essential for assessing treatment processes and plants, conducting wastewater-based epidemiology, and advancing environmental toxicology research. In recent years, artificial intelligence (AI) has been increasingly applied to enhance chemical analysis and monitoring of contaminants in environmental water and wastewater. However, their specific roles targeting pharmaceuticals and personal care products (PPCPs) have not been reviewed sufficiently. This review aims to narrow the gap by highlighting, scoping, and discussing the incorporation of AI during the detection and quantification of PPCPs when utilising chemical analysis equipment and interpreting their monitoring data for the first time. In the chemical analysis of PPCPs, AI-assisted prediction of chromatographic retention times and collision cross-sections (CCS) in suspect and non-target screenings using high-resolution mass spectrometry (HRMS) enhances detection confidence, reduces analysis time, and lowers costs. AI also aids in interpreting spectroscopic analysis results. However, this approach still cannot be applied in all matrices, as it offers lower sensitivity than liquid chromatography coupled with tandem or HRMS. For the interpretation of monitoring of PPCPs, unsupervised AI methods have recently presented the capacity to survey regional or national community health and socioeconomic factors. Nevertheless, as a challenge, long-term monitoring data sources are not given in the literature, and more comparative AI studies are needed for both chemical analysis and monitoring. Finally, AI assistance anticipates more frequent applications of CCS prediction to enhance detection confidence and the use of AI methods in data processing for wastewater-based epidemiology and community health surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
善学以致用应助佐佑采纳,获得30
2秒前
3秒前
4秒前
科研通AI5应助小陈加油呀采纳,获得10
5秒前
laoku发布了新的文献求助10
6秒前
WD完成签到,获得积分10
6秒前
Drwld发布了新的文献求助10
7秒前
7秒前
10秒前
独一无二发布了新的文献求助10
10秒前
迅速曲奇完成签到,获得积分20
11秒前
斯文败类应助jayna采纳,获得10
11秒前
mark33442发布了新的文献求助10
12秒前
wenwen发布了新的文献求助10
13秒前
听南发布了新的文献求助10
15秒前
科研通AI5应助科研狗采纳,获得10
19秒前
shhoing应助莫小乔斯采纳,获得10
22秒前
23秒前
木头人应助迪丽热巴采纳,获得30
23秒前
星辰大海应助听南采纳,获得10
26秒前
28秒前
情怀应助Capybara采纳,获得10
28秒前
28秒前
负责小蜜蜂完成签到,获得积分10
29秒前
song完成签到 ,获得积分10
31秒前
害羞天荷完成签到,获得积分20
32秒前
科研通AI5应助GONG采纳,获得10
34秒前
无名老大应助西出钰门采纳,获得50
34秒前
哒哒发布了新的文献求助10
35秒前
35秒前
35秒前
35秒前
ccc完成签到 ,获得积分10
36秒前
36秒前
xier完成签到 ,获得积分10
37秒前
白华苍松发布了新的文献求助10
40秒前
科研狗发布了新的文献求助10
41秒前
Capybara发布了新的文献求助10
42秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497125
求助须知:如何正确求助?哪些是违规求助? 3081708
关于积分的说明 9169059
捐赠科研通 2774847
什么是DOI,文献DOI怎么找? 1522615
邀请新用户注册赠送积分活动 706128
科研通“疑难数据库(出版商)”最低求助积分说明 703222