Linking leaf dark respiration to leaf traits and reflectance spectroscopy across diverse forest types

生物 特质 生态系统 温带森林 生态学 植物 计算机科学 程序设计语言
作者
Fengqi Wu,Shuwen Liu,Julien Lamour,Owen K. Atkin,Nan Yang,Tingting Dong,Weiying Xu,Nicholas G. Smith,Zhihui Wang,Han Wang,Yanjun Su,Xiaojuan Liu,Yue Shi,Aijun Xing,Guanhua Dai,Jinlong Dong,Nathan G. Swenson,Jens Kattge,Peter B. Reich,Shawn Serbin,Alistair Rogers,Jin Wu,Zhengbing Yan
出处
期刊:New Phytologist [Wiley]
标识
DOI:10.1111/nph.20267
摘要

Summary Leaf dark respiration ( R dark ), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity ( V cmax ), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed. Here, we analyzed R dark variability and its associations with V cmax and other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative. We found that leaf magnesium and calcium concentrations were more significant in explaining cross‐site R dark than commonly used traits like LMA, N and P concentrations, but univariate trait– R dark relationships were always weak ( r 2 ≤ 0.15) and forest‐specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait– R dark relationships, accurately predicted cross‐site R dark ( r 2 = 0.65) and pinpointed the factors contributing to R dark variability. Our findings reveal a few novel traits with greater cross‐site scalability regarding R dark , challenging the use of empirical trait– R dark relationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimating R dark , which could ultimately improve process modeling of terrestrial plant respiration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助eeeee采纳,获得10
1秒前
lwxuan发布了新的文献求助10
2秒前
karyoter关注了科研通微信公众号
4秒前
5秒前
7秒前
维尼完成签到 ,获得积分10
7秒前
chuu完成签到,获得积分10
8秒前
chaos完成签到 ,获得积分10
8秒前
kk应助玛卡巴卡采纳,获得10
9秒前
哒哒发布了新的文献求助10
9秒前
科研通AI2S应助Moonflower采纳,获得10
9秒前
lwxuan完成签到,获得积分10
10秒前
11秒前
12秒前
lt发布了新的文献求助10
12秒前
小鱼儿不语雨完成签到,获得积分10
14秒前
医学林发布了新的文献求助10
15秒前
牙签撬地球应助吕如音采纳,获得10
15秒前
拉卡拉ah发布了新的文献求助10
16秒前
不配.应助哒哒采纳,获得10
16秒前
斯文败类应助哈哈采纳,获得10
17秒前
18秒前
18秒前
科目三应助爱听歌的青筠采纳,获得10
21秒前
万能图书馆应助炙热甜瓜采纳,获得10
21秒前
lurongjun发布了新的文献求助50
22秒前
22秒前
22秒前
23秒前
karyoter发布了新的文献求助10
23秒前
25秒前
小陈发布了新的文献求助20
25秒前
26秒前
27秒前
1111发布了新的文献求助10
27秒前
情怀应助拉卡拉ah采纳,获得10
27秒前
jzd1991完成签到,获得积分10
27秒前
SciGPT应助123采纳,获得10
28秒前
28秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136252
求助须知:如何正确求助?哪些是违规求助? 2787284
关于积分的说明 7780707
捐赠科研通 2443292
什么是DOI,文献DOI怎么找? 1299034
科研通“疑难数据库(出版商)”最低求助积分说明 625318
版权声明 600888