材料科学
粉末冶金
冶金
透视图(图形)
氮气
微观结构
物理
量子力学
人工智能
计算机科学
作者
Louis Becker,Felix Radtke,Jonathan Lentz,Simone Herzog,Christoph Broeckmann,Sebastian Weber
标识
DOI:10.1002/adem.202402033
摘要
Incorporating nitrogen as an alloying element in stainless steels can significantly enhance their mechanical and chemical properties. However, the limited solubility of nitrogen, particularly in the liquid phase, presents challenges. This perspective article explores an innovative powder metallurgical approach to producing high‐nitrogen steels (HNS) by utilizing a mixture of stainless steel and Si 3 N 4 . This mixture undergoes hot isostatic pressing (HIP) followed by direct quenching, facilitating diffusion alloying, and solution annealing in a single step. The article also examines adapting this method to powder bed fusion of metals using a laser beam (PBF‐LB/M) to overcome nitrogen solubility limits, which currently constrain the achievable nitrogen content in PBF‐LB/M‐manufactured stainless steels. The approach aims to retain Si 3 N 4 particles within the matrix during PBF‐LB/M to enrich the steel with nitrogen during subsequent HIP. However, laser interaction with Si 3 N 4 can lead to nitrogen loss, prompting an alternative strategy: a shell–core structure based on a gas‐tight shell enclosing loose Si 3 N 4 particles. These particles dissolve during HIP, enriching the matrix with nitrogen and enabling the production of HNS. This article highlights the potential for extending this approach to other stainless steel groups, broadening the possibilities for HNS production through both conventional HIP and PBF‐LB/M manufacturing routes.
科研通智能强力驱动
Strongly Powered by AbleSci AI