Key genes and biological pathways in pulmonary arterial hypertension related to endoplasmic reticulum stress identified by bioinformatics

基因 内质网 未折叠蛋白反应 生物 免疫系统 微阵列 微阵列分析技术 生物信息学 计算生物学 遗传学 基因表达
作者
Shanzuan Wang,Debin Zhuo,Juan Lin,Chunxia Zhang
出处
期刊:Journal of Cardiovascular Pharmacology [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/fjc.0000000000001651
摘要

Pulmonary arterial hypertension (PAH) is a cardiopulmonary vascular condition with an unclear pathogenesis. Targeting endoplasmic reticulum (ER) stress has been suggested as a novel treatment approach for PAH, but the mechanisms involving ER stress-related genes in PAH are not well understood. Microarray data for PAH and ER stress-related genes were analyzed. Differential and Venn analyses identified 17 differentially expressed ER stress-related genes in PAH. Candidate drugs targeting these genes were predicted using the CMap database. A protein-protein interaction (PPI) network was constructed, and hub genes (LCN2, IGF1, VCAM1, EDN1, HMOX1, TLR4) with complex interplays were identified using the STRING database and Cytoscape plugins. The clinical diagnostic performance of the hub genes was evaluated using ROC curves. The GeneMANIA website was utilized to predict enriched pathways associated with the hub genes and their functionally similar genes. MiRNAs and transcription factors (TFs) targeting the hub genes were predicted using the Networkanalyst website. The immune levels in control samples and PAH samples were assessed using various algorithms. Nine drug candidates were found to potentially target the identified ER stress-related genes. The hub genes and their correlated genes were significantly enriched in immune-related pathways. The PAH group showed increased immune cell infiltration, indicating a heightened immune response. This study sheds light on the role of ER stress-associated hub genes in PAH and proposes potential drugs targeting these genes. These findings provide valuable insights into PAH mechanisms and support the exploration of ER stress as a therapeutic target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助amll采纳,获得10
刚刚
1秒前
1秒前
悦耳听芹发布了新的文献求助10
2秒前
淡定碧玉完成签到 ,获得积分10
2秒前
2秒前
明亮的代灵完成签到 ,获得积分10
5秒前
小刘完成签到 ,获得积分10
6秒前
峰宝宝发布了新的文献求助10
7秒前
鸭鸭发布了新的文献求助10
8秒前
9秒前
13秒前
endlessloop发布了新的文献求助80
13秒前
14秒前
pluto应助正圆儿采纳,获得10
14秒前
14秒前
15秒前
领导范儿应助3号采纳,获得10
16秒前
霸气丹寒完成签到,获得积分10
16秒前
Bleser发布了新的文献求助10
17秒前
mage发布了新的文献求助10
17秒前
:9发布了新的文献求助10
18秒前
汤姆发布了新的文献求助30
18秒前
健壮念寒发布了新的文献求助10
19秒前
gold5关注了科研通微信公众号
19秒前
20秒前
zeno123456完成签到,获得积分10
21秒前
22秒前
坦率尔琴完成签到,获得积分10
22秒前
:9完成签到,获得积分10
24秒前
24秒前
Bleser完成签到,获得积分10
24秒前
追寻思雁发布了新的文献求助10
25秒前
26秒前
3号发布了新的文献求助10
28秒前
科研通AI5应助cjh采纳,获得10
30秒前
30秒前
0513flpb完成签到,获得积分10
31秒前
mage发布了新的文献求助10
31秒前
科研通AI5应助汤姆采纳,获得30
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740101
求助须知:如何正确求助?哪些是违规求助? 3283046
关于积分的说明 10033642
捐赠科研通 2999934
什么是DOI,文献DOI怎么找? 1646216
邀请新用户注册赠送积分活动 783427
科研通“疑难数据库(出版商)”最低求助积分说明 750374