LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection

计算机科学 推论 任务(项目管理) 语言模型 人工智能 认知 过程(计算) 机器学习 自然语言处理 心理学 工程类 程序设计语言 系统工程 神经科学
作者
Woojin Lee,J.-J. Lee,Harksoo Kim
出处
期刊:PeerJ [PeerJ]
卷期号:10: e2585-e2585
标识
DOI:10.7717/peerj-cs.2585
摘要

Stance detection is a critical task in natural language processing that determines an author’s viewpoint toward a specific target, playing a pivotal role in social science research and various applications. Traditional approaches incorporating Wikipedia-sourced data into small language models (SLMs) to compensate for limited target knowledge often suffer from inconsistencies in article quality and length due to the diverse pool of Wikipedia contributors. To address these limitations, we utilize large language models (LLMs) pretrained on expansive datasets to generate accurate and contextually relevant target knowledge. By providing concise, real-world insights tailored to the stance detection task, this approach surpasses the limitations of Wikipedia-based information. Despite their superior reasoning capabilities, LLMs are computationally intensive and challenging to deploy on smaller devices. To mitigate these drawbacks, we introduce a reasoning distillation methodology that transfers the reasoning capabilities of LLMs to more compact SLMs, enhancing their efficiency while maintaining robust performance. Our stance detection model, LOGIC (LLM-Originated Guidance for Internal Cognitive improvement of small language models in stance detection), is built on Bidirectional and Auto-Regressive Transformer (BART) and fine-tuned with auxiliary learning tasks, including reasoning distillation. By incorporating LLM-generated target knowledge into the inference process, LOGIC achieves state-of-the-art performance on the VAried Stance Topics (VAST) dataset, outperforming advanced models like GPT-3.5 Turbo and GPT-4 Turbo in stance detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Kuripa发布了新的文献求助10
2秒前
一座山的风完成签到,获得积分10
3秒前
QYPANG发布了新的文献求助10
3秒前
轻舟完成签到,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
过分美丽完成签到 ,获得积分10
7秒前
大个应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
Daidai应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
TianYe6680发布了新的文献求助10
7秒前
7秒前
7秒前
外向的汤圆完成签到,获得积分10
7秒前
小喻芳完成签到,获得积分10
8秒前
8秒前
852应助miemie采纳,获得10
10秒前
aafrr完成签到 ,获得积分10
10秒前
小喻芳发布了新的文献求助10
11秒前
11秒前
Ava应助酷酷冷亦采纳,获得10
14秒前
14秒前
JamesPei应助4kerzz采纳,获得10
14秒前
小二郎应助Chen采纳,获得10
16秒前
17秒前
斯可发布了新的文献求助30
19秒前
20秒前
传奇3应助digger2023采纳,获得10
21秒前
21秒前
21秒前
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483773
求助须知:如何正确求助?哪些是违规求助? 3073002
关于积分的说明 9128881
捐赠科研通 2764596
什么是DOI,文献DOI怎么找? 1517290
邀请新用户注册赠送积分活动 701998
科研通“疑难数据库(出版商)”最低求助积分说明 700849