材料科学
金属锂
电解质
氟化物
氟化锂
电池(电)
锂(药物)
异质结
金属
接口(物质)
快离子导体
锂电池
无机化学
电极
光电子学
离子键合
物理化学
离子
冶金
复合材料
热力学
功率(物理)
有机化学
毛细管数
毛细管作用
内分泌学
化学
医学
物理
作者
Shengtao Xu,Sheng Xu,Feng Guo,Jin Xiong,Zidong Wei,Sheng Zhu,Jinting Xu,Shuaiqi Gong,Penghui Shi,Shuainan Guo,Yulin Min
标识
DOI:10.1002/adfm.202500335
摘要
Abstract Currently, the design of lithium metal batteries primarily focuses on improving cycling stability by increasing the lithium fluoride (LiF) content in the interfacial layer. However, the extensive use of fluorides poses severe environmental concerns. In this study, a novel strategy is proposed to construct a Li 3 N/Li 2 O heterostructure via the in situ decomposition of lithium perchlorate (LiClO 4 ) and lithium nitrate (LiNO 3 ), replacing the role of LiF in the SEI. This unique heterostructure combines excellent lithium‐ion transport capability with robust electronic insulation properties, effectively preventing electron tunneling phenomena. When paired with the NCM811 cathode, the Li||NCM811 full cell exhibits exceptional electrochemical performance, including outstanding charge–discharge capabilities under extreme temperatures. At 60 °C and 1C conditions, the battery retains 82.11% of its capacity after 500 cycles; at 25 °C and 1C, it maintains a capacity retention rate of 80.61% after 800 cycles. Furthermore, under practical application conditions (100 µm lithium anode, N/P ratio of 3.09, and a 1.5 Ah pouch cell), the fluorine‐free lithium metal battery (LMB) retains 77.93% capacity after 100 cycles, demonstrating the superiority and practical value of this strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI