甲脒
钙钛矿(结构)
碘化物
材料科学
化学工程
晶界
化学
无机化学
结晶学
复合材料
微观结构
工程类
作者
Chuanshuai Han,Yeyong Wu,Guiying Xu,Xiaoxiao Wu,Jiacheng Xu,Tingting Xu,Shihao Huang,Yunxiu Shen,Zhiyun Cao,Weijie Chen,Xiaoping Xu,Yaowen Li
标识
DOI:10.1002/anie.202419726
摘要
The rapid reaction between lead iodide (PbI2) and formamidinium iodide (FAI) complicates the fabrication of high-quality formamidinium lead iodide (FAPbI3) films. Conventional methods, such as using nonvolatile small molecular additives to slow the reaction, often result in buried interfacial voids and molecule diffusion, compromising the devices' operational stability. In this study, we introduced a molecular "thruster"-a hypervalent iodine (III) compound with three carbonyl groups and a C--I⁺ bond-that possesses coordination and dissociation abilities, enabling programed modulation of perovskite-film growth kinetics. Initially, the three carbonyl groups coordinate with PbI2 to slow the reaction between FAI and PbI2, preventing δ-phase formation. As temperature rises, the C--I⁺ bond dissociates, promoting perovskite growth and the dissociated product iodobenzene will promote solvent volatilization, thus avoiding buried interfacial voids. Another product, a carbene compound with eight lone pair electrons sufficiently passivate the undercoordinated Pb2+ defects and anchors at grain boundaries without diffusion. Consequently, the resultant FAPbI3 film displays high-quality with enhanced phase purity, compact morphology, and reduced defects. Evidently, 0.062- and 1.004-cm2 pero-SCs achieve power conversion efficiencies (PCEs) of up to 26.06% (25.79% certified) and 24.65%, respectively. This approach also controls perovskite-film growth on plastic substrates, resulting in flexible pero-SCs with an impressive PCE of 25.12%.
科研通智能强力驱动
Strongly Powered by AbleSci AI