A Wireless Health Monitoring System Accomplishing Bimodal Decoupling Based on an “IS”‐Shaped Multifunctional Conductive Hydrogel

解耦(概率) 材料科学 导电体 纳米技术 无线 导电聚合物 聚合物 计算机科学 电信 工程类 复合材料 控制工程
作者
Yufeng Li,Yang Xu,Yarong Ding,Huiwen Zhang,Yafang Cheng,Xiaofang Li,Jiachun Sun,Yannan Liu,Yingchun Li,Daidi Fan
出处
期刊:Small [Wiley]
卷期号:21 (21): e2411046-e2411046 被引量:10
标识
DOI:10.1002/smll.202411046
摘要

Abstract Flexible wearable sensors with bimodal functionality offer substantial value for human health monitoring, as relying on a single indicator is insufficient for capturing comprehensive physiological information. However, bimodal sensors face multiple challenges in practical applications, including mutual interference between various modalities, and integration of excellent mechanical properties, interfacial adhesion, environmental adaptability and biocompatibility. Herein, the multifunctional hydrogel, synthesized through radical grafting and supramolecular self‐crosslinking reactions, exhibits excellent thermal sensitivity (TCR = −1.70% °C −1 ), high toughness (9.31 MJ m − 3 ), wide strain range (0–600%), outstanding adhesion strength (36.07 kPa), antifreeze, visualization, water retention, biocompatibility, antibacterial and antioxidant capabilities. Leveraging its excellent conductivity, this hydrogel can be applied in electroluminescent, triboelectricity, electromyography monitoring, and message encryption. Moreover, the hydrogel is fabricated as bimodal smart sensors for strain and temperature monitoring. To avoid mutual interference between the two signals, a wearable system in “IS”‐shaped configuration is innovatively designed based on finite element simulation results. The integration of “IS”‐shaped hydrogel, flexible circuit modules, and data transmission form a closed‐loop wearable platform for rehabilitation training of patients with arthritis or joint surgery. This strategy establishes a bimodal decoupling and self‐calibrating system utilizing a single material to accurately detect multiple parameters, advancing wearable electronics and personalized medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助文官采纳,获得10
刚刚
小小应助will采纳,获得10
刚刚
希望天下0贩的0应助ss采纳,获得10
刚刚
Dr_Zhang完成签到,获得积分10
1秒前
含蓄的海完成签到,获得积分10
1秒前
仁爱的梦曼完成签到 ,获得积分10
1秒前
风趣烤鸡发布了新的文献求助10
2秒前
haizz完成签到,获得积分10
3秒前
Orange应助yang采纳,获得10
4秒前
4秒前
香香发布了新的文献求助10
5秒前
5秒前
共享精神应助复杂梦安采纳,获得10
6秒前
6秒前
6秒前
搜集达人应助xio采纳,获得10
7秒前
wzf完成签到 ,获得积分10
7秒前
科研通AI6应助Logan采纳,获得10
7秒前
别当真发布了新的文献求助10
8秒前
8秒前
锦慜发布了新的文献求助10
8秒前
8秒前
Wind应助111采纳,获得10
9秒前
iNk应助你好采纳,获得10
10秒前
10秒前
11秒前
轶Y发布了新的文献求助10
11秒前
阔达宝莹发布了新的文献求助10
11秒前
wsqg123完成签到,获得积分10
12秒前
albert发布了新的文献求助10
13秒前
13秒前
Ava应助淡然的冷霜采纳,获得10
13秒前
13秒前
Nthorn_rone完成签到,获得积分10
14秒前
小白发布了新的文献求助10
16秒前
16秒前
16秒前
任梦萍完成签到 ,获得积分10
16秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646