执行机构
端口(电路理论)
气动执行机构
刚度
调制(音乐)
工程类
机械工程
物理
结构工程
声学
电气工程
作者
Yuxi Lu,Zhongchao Zhou,Tatsuo Igarashi,Pablo E. Tortós Vinocour,Jose Gomez Tames,Wenwei Yu
标识
DOI:10.1088/1361-665x/ad9973
摘要
Abstract Soft actuators have demonstrated potential in minimally invasive surgery (MIS), requiring multiple degrees of freedom and stiffness modulation facilitated by pneumatic antagonistic chambers. However, the hollow central passage in these actuators for single-port surgery complicates the internal stress distribution during the inflation of multiple chambers, making stiffness modulation mechanisms difficult to understand. In this study, a finite element analysis model is developed to explore the combined effect of the internal stress distribution and duct structure on the stiffness modulation in soft actuators equipped with multiple pneumatic antagonistic chambers. A prototype is developed to cross-validate the simulation and examine the effects of various antagonistic chambers on the stiffness modulation. The findings confirm that inflating specific chambers alters the internal stress distribution of the actuator by creating bending moments that influence deformation responses to external loads. These moments impact the stiffness and structure of the hollow central duct by modifying its geometrical moment of inertia and affecting the lengths of the tensile and compressive regions during bending, further influencing the stiffness. The effects of bending moments and the geometrical moment of inertia on stiffness modulation vary across different actuator sections owing to the varying lengths of the tensile and compressive regions during bending. These stiffness modulations affect the tip bending, force, and response time. The study findings provide insights into the mechanism of stiffness modulation for the design of soft actuators for complex MIS
科研通智能强力驱动
Strongly Powered by AbleSci AI