舍曲林
丝氨酸
氯喹
甘氨酸
医学
药理学
癌症研究
化学
内科学
免疫学
疟疾
抗抑郁药
生物化学
氨基酸
磷酸化
海马体
作者
Anaís Sánchez‐Castillo,Kim G. Savelkouls,A Baldini,Judith Hounjet,Pierre Sonveaux,Paulien Verstraete,Kim De Keersmaecker,Barbara Dewaele,Benny Björkblom,Beatrice Melin,Wendy Wu,Rickard L. Sjöberg,Kasper M.A. Rouschop,Martijn Broen,Marc Vooijs,Kim R. Kampen
出处
期刊:Oncogenesis
[Springer Nature]
日期:2024-11-13
卷期号:13 (1)
标识
DOI:10.1038/s41389-024-00540-3
摘要
The serine/glycine (ser/gly) synthesis pathway branches from glycolysis and is hyperactivated in approximately 30% of cancers. In ~13% of glioblastoma cases, we observed frequent amplifications and rare mutations in the gene encoding the enzyme PSPH, which catalyzes the last step in the synthesis of serine. This urged us to unveil the relevance of PSPH genetic alterations and subsequent ser/gly metabolism deregulation in the pathogenesis of glioblastoma. Primary glioblastoma cells overexpressing PSPH and PSPHV116I showed an increased clonogenic capacity, cell proliferation, and migration, supported by elevated nucleotide synthesis and utilization of reductive NAD(P). We previously identified sertraline as an inhibitor of ser/gly synthesis and explored its efficacy at suboptimal dosages in combination with the clinically pretested chloroquine to target ser/glyhigh glioblastoma models. Interestingly, ser/glyhigh glioblastomas, including PSPHamp and PSPHV116I, displayed selective synergistic inhibition of proliferation in response to combination therapy. PSPH knockdown severely affected ser/glyhigh glioblastoma clonogenicity and proliferation, while simultaneously increasing its sensitivity to chloroquine treatment. Metabolite landscaping revealed that sertraline/chloroquine combination treatment blocks NADH and ATP generation and restricts nucleotide synthesis, thereby inhibiting glioblastoma proliferation. Our previous studies highlight ser/glyhigh cancer cell modulation of its microenvironment at the level of immune suppression. To this end, high PSPH expression predicts poor immune checkpoint therapy responses in glioblastoma patients. Interestingly, we show that PSPH amplifications in glioblastoma facilitate the expression of immune suppressor galectin-1, which can be inhibited by sertraline treatment. Collectively, we revealed that ser/glyhigh glioblastomas are characterized by enhanced clonogenicity, migration, and suppression of the immune system, which could be tackled using combined sertraline/chloroquine treatment, revealing novel therapeutic opportunities for this subgroup of GBM patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI