Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures

人工智能 计算机科学 卷积神经网络 深度学习 精确性和召回率 像素 分割 集合(抽象数据类型) 数据集 公制(单位) 模式识别(心理学) 计算机视觉 运营管理 经济 程序设计语言
作者
Daichi Kitaguchi,Younae Lee,Kazuyuki Hayashi,Kei Nakajima,Shigehiro Kojima,Hiro Hasegawa,Nobuyoshi Takeshita,Kensaku Mori,Masaaki Ito
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (8): e2226265-e2226265 被引量:13
标识
DOI:10.1001/jamanetworkopen.2022.26265
摘要

Importance

Deep learning–based automatic surgical instrument recognition is an indispensable technology for surgical research and development. However, pixel-level recognition with high accuracy is required to make it suitable for surgical automation.

Objective

To develop a deep learning model that can simultaneously recognize 8 types of surgical instruments frequently used in laparoscopic colorectal operations and evaluate its recognition performance.

Design, Setting, and Participants

This quality improvement study was conducted at a single institution with a multi-institutional data set. Laparoscopic colorectal surgical videos recorded between April 1, 2009, and December 31, 2021, were included in the video data set. Deep learning–based instance segmentation, an image recognition approach that recognizes each object individually and pixel by pixel instead of roughly enclosing with a bounding box, was performed for 8 types of surgical instruments.

Main Outcomes and Measures

Average precision, calculated from the area under the precision-recall curve, was used as an evaluation metric. The average precision represents the number of instances of true-positive, false-positive, and false-negative results, and the mean average precision value for 8 types of surgical instruments was calculated. Five-fold cross-validation was used as the validation method. The annotation data set was split into 5 segments, of which 4 were used for training and the remainder for validation. The data set was split at the per-case level instead of the per-frame level; thus, the images extracted from an intraoperative video in the training set never appeared in the validation set. Validation was performed for all 5 validation sets, and the average mean average precision was calculated.

Results

In total, 337 laparoscopic colorectal surgical videos were used. Pixel-by-pixel annotation was manually performed for 81 760 labels on 38 628 static images, constituting the annotation data set. The mean average precisions of the instance segmentation for surgical instruments were 90.9% for 3 instruments, 90.3% for 4 instruments, 91.6% for 6 instruments, and 91.8% for 8 instruments.

Conclusions and Relevance

A deep learning–based instance segmentation model that simultaneously recognizes 8 types of surgical instruments with high accuracy was successfully developed. The accuracy was maintained even when the number of types of surgical instruments increased. This model can be applied to surgical innovations, such as intraoperative navigation and surgical automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清城完成签到,获得积分10
刚刚
tietie发布了新的文献求助10
1秒前
大袁完成签到,获得积分10
1秒前
Svetlana给Svetlana的求助进行了留言
1秒前
luf完成签到,获得积分10
1秒前
1秒前
jj完成签到,获得积分10
2秒前
MingM应助周一凡采纳,获得10
2秒前
勤恳白秋完成签到,获得积分10
2秒前
JamesPei应助wsh采纳,获得10
2秒前
知性的绮兰完成签到,获得积分10
3秒前
阿森松岛发布了新的文献求助10
3秒前
淡定白易完成签到,获得积分10
3秒前
elena发布了新的文献求助10
3秒前
HC完成签到,获得积分10
3秒前
wanglongjun发布了新的文献求助10
4秒前
一枝杷枇完成签到,获得积分10
4秒前
在水一方应助一棵树采纳,获得10
4秒前
单身的钧发布了新的文献求助10
5秒前
哎呀发布了新的文献求助10
5秒前
科研通AI2S应助longtengfei采纳,获得10
5秒前
redondo10完成签到,获得积分0
6秒前
星河在眼里完成签到,获得积分10
6秒前
曲奇不甜完成签到 ,获得积分10
6秒前
lumen完成签到 ,获得积分10
6秒前
吃三口茄子完成签到,获得积分10
6秒前
田様应助幸福萝采纳,获得10
6秒前
jychen85完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
蓝莲完成签到,获得积分10
8秒前
上官若男应助孤独的匕采纳,获得10
8秒前
淡然扬发布了新的文献求助10
9秒前
CC完成签到,获得积分10
9秒前
9秒前
瘦瘦完成签到,获得积分10
9秒前
For-t-完成签到 ,获得积分10
10秒前
飘文献完成签到,获得积分10
10秒前
amo完成签到,获得积分10
10秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072891
求助须知:如何正确求助?哪些是违规求助? 2726503
关于积分的说明 7495286
捐赠科研通 2374552
什么是DOI,文献DOI怎么找? 1259054
科研通“疑难数据库(出版商)”最低求助积分说明 610527
版权声明 597020