已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures

人工智能 计算机科学 卷积神经网络 深度学习 精确性和召回率 像素 分割 集合(抽象数据类型) 数据集 公制(单位) 模式识别(心理学) 计算机视觉 运营管理 经济 程序设计语言
作者
Daichi Kitaguchi,Younae Lee,Kazuyuki Hayashi,Kei Nakajima,Shigehiro Kojima,Hiro Hasegawa,Nobuyoshi Takeshita,Kensaku Mori,Masaaki Ito
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (8): e2226265-e2226265 被引量:13
标识
DOI:10.1001/jamanetworkopen.2022.26265
摘要

Importance

Deep learning–based automatic surgical instrument recognition is an indispensable technology for surgical research and development. However, pixel-level recognition with high accuracy is required to make it suitable for surgical automation.

Objective

To develop a deep learning model that can simultaneously recognize 8 types of surgical instruments frequently used in laparoscopic colorectal operations and evaluate its recognition performance.

Design, Setting, and Participants

This quality improvement study was conducted at a single institution with a multi-institutional data set. Laparoscopic colorectal surgical videos recorded between April 1, 2009, and December 31, 2021, were included in the video data set. Deep learning–based instance segmentation, an image recognition approach that recognizes each object individually and pixel by pixel instead of roughly enclosing with a bounding box, was performed for 8 types of surgical instruments.

Main Outcomes and Measures

Average precision, calculated from the area under the precision-recall curve, was used as an evaluation metric. The average precision represents the number of instances of true-positive, false-positive, and false-negative results, and the mean average precision value for 8 types of surgical instruments was calculated. Five-fold cross-validation was used as the validation method. The annotation data set was split into 5 segments, of which 4 were used for training and the remainder for validation. The data set was split at the per-case level instead of the per-frame level; thus, the images extracted from an intraoperative video in the training set never appeared in the validation set. Validation was performed for all 5 validation sets, and the average mean average precision was calculated.

Results

In total, 337 laparoscopic colorectal surgical videos were used. Pixel-by-pixel annotation was manually performed for 81 760 labels on 38 628 static images, constituting the annotation data set. The mean average precisions of the instance segmentation for surgical instruments were 90.9% for 3 instruments, 90.3% for 4 instruments, 91.6% for 6 instruments, and 91.8% for 8 instruments.

Conclusions and Relevance

A deep learning–based instance segmentation model that simultaneously recognizes 8 types of surgical instruments with high accuracy was successfully developed. The accuracy was maintained even when the number of types of surgical instruments increased. This model can be applied to surgical innovations, such as intraoperative navigation and surgical automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚果爱吃坚果完成签到 ,获得积分20
1秒前
zyx完成签到,获得积分10
1秒前
Rain完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
李昆朋完成签到,获得积分10
3秒前
3秒前
altair完成签到 ,获得积分10
4秒前
xiemeili完成签到 ,获得积分10
7秒前
123完成签到,获得积分10
7秒前
芳华如梦完成签到 ,获得积分10
7秒前
时尚问安完成签到 ,获得积分10
8秒前
9秒前
10秒前
俭朴尔竹完成签到,获得积分10
10秒前
徐林发布了新的文献求助10
13秒前
木之夏发布了新的文献求助10
14秒前
Nann完成签到 ,获得积分10
15秒前
ankh发布了新的文献求助10
15秒前
骆凤灵完成签到 ,获得积分10
15秒前
企鹅吃圣代完成签到 ,获得积分10
17秒前
18秒前
海底两万里应助yingliusd采纳,获得10
20秒前
我爱学习完成签到 ,获得积分10
20秒前
罐罐儿应助ankh采纳,获得10
21秒前
布梨完成签到 ,获得积分10
23秒前
小滕完成签到 ,获得积分10
23秒前
陈炜smile发布了新的文献求助10
23秒前
wenhao完成签到 ,获得积分10
24秒前
xiao完成签到 ,获得积分10
25秒前
KOKORO.C完成签到,获得积分10
26秒前
抽疯的电风扇13完成签到 ,获得积分10
26秒前
27秒前
微笑冰旋发布了新的文献求助10
30秒前
31秒前
舒适的方盒完成签到 ,获得积分10
32秒前
宸1完成签到 ,获得积分10
33秒前
Levent发布了新的文献求助10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248609
求助须知:如何正确求助?哪些是违规求助? 2892063
关于积分的说明 8269674
捐赠科研通 2560135
什么是DOI,文献DOI怎么找? 1388854
科研通“疑难数据库(出版商)”最低求助积分说明 650926
邀请新用户注册赠送积分活动 627798