Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures

人工智能 计算机科学 卷积神经网络 深度学习 精确性和召回率 像素 分割 集合(抽象数据类型) 数据集 公制(单位) 模式识别(心理学) 计算机视觉 运营管理 经济 程序设计语言
作者
Daichi Kitaguchi,Younae Lee,Kazuyuki Hayashi,Kei Nakajima,Shigehiro Kojima,Hiro Hasegawa,Nobuyoshi Takeshita,Kensaku Mori,Masaaki Ito
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (8): e2226265-e2226265 被引量:13
标识
DOI:10.1001/jamanetworkopen.2022.26265
摘要

Importance

Deep learning–based automatic surgical instrument recognition is an indispensable technology for surgical research and development. However, pixel-level recognition with high accuracy is required to make it suitable for surgical automation.

Objective

To develop a deep learning model that can simultaneously recognize 8 types of surgical instruments frequently used in laparoscopic colorectal operations and evaluate its recognition performance.

Design, Setting, and Participants

This quality improvement study was conducted at a single institution with a multi-institutional data set. Laparoscopic colorectal surgical videos recorded between April 1, 2009, and December 31, 2021, were included in the video data set. Deep learning–based instance segmentation, an image recognition approach that recognizes each object individually and pixel by pixel instead of roughly enclosing with a bounding box, was performed for 8 types of surgical instruments.

Main Outcomes and Measures

Average precision, calculated from the area under the precision-recall curve, was used as an evaluation metric. The average precision represents the number of instances of true-positive, false-positive, and false-negative results, and the mean average precision value for 8 types of surgical instruments was calculated. Five-fold cross-validation was used as the validation method. The annotation data set was split into 5 segments, of which 4 were used for training and the remainder for validation. The data set was split at the per-case level instead of the per-frame level; thus, the images extracted from an intraoperative video in the training set never appeared in the validation set. Validation was performed for all 5 validation sets, and the average mean average precision was calculated.

Results

In total, 337 laparoscopic colorectal surgical videos were used. Pixel-by-pixel annotation was manually performed for 81 760 labels on 38 628 static images, constituting the annotation data set. The mean average precisions of the instance segmentation for surgical instruments were 90.9% for 3 instruments, 90.3% for 4 instruments, 91.6% for 6 instruments, and 91.8% for 8 instruments.

Conclusions and Relevance

A deep learning–based instance segmentation model that simultaneously recognizes 8 types of surgical instruments with high accuracy was successfully developed. The accuracy was maintained even when the number of types of surgical instruments increased. This model can be applied to surgical innovations, such as intraoperative navigation and surgical automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skier发布了新的文献求助10
1秒前
balabala完成签到,获得积分20
1秒前
隐形曼青应助kb采纳,获得10
2秒前
yanyan发布了新的文献求助10
4秒前
繁笙完成签到 ,获得积分10
4秒前
4秒前
无言完成签到 ,获得积分10
4秒前
NONO完成签到 ,获得积分10
5秒前
星辰大海应助TT采纳,获得10
5秒前
7秒前
康康完成签到,获得积分10
7秒前
Xv完成签到,获得积分0
7秒前
10秒前
10秒前
香蕉觅云应助zfzf0422采纳,获得10
10秒前
11秒前
11秒前
李健应助爱听歌的向日葵采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
烟花应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得80
12秒前
所所应助科研通管家采纳,获得20
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得30
13秒前
婷婷发布了新的文献求助10
13秒前
zzt完成签到,获得积分10
15秒前
张小汉发布了新的文献求助30
16秒前
二十四发布了新的文献求助10
16秒前
赘婿应助junzilan采纳,获得10
16秒前
FashionBoy应助勤恳的雨文采纳,获得10
16秒前
aaa完成签到,获得积分10
17秒前
18秒前
11111完成签到,获得积分20
19秒前
仔wang完成签到,获得积分10
19秒前
21秒前
忘羡222发布了新的文献求助20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824