Deep Learning Detects Changes Indicative of Axial Spondyloarthritis at MRI of Sacroiliac Joints

医学 骶髂关节炎 队列 末端炎 接收机工作特性 强直性脊柱炎 回顾性队列研究 磁共振成像 轴性脊柱炎 放射科 内科学 物理疗法 关节炎 银屑病性关节炎
作者
Keno K. Bressem,Lisa C. Adams,Fabian Proft,Kay‐Geert Hermann,Torsten Diekhoff,Laura Spiller,Stefan M. Niehues,Marcus R. Makowski,Bernd Hamm,Mikhail Protopopov,Valeria Ríos Rodríguez,Hildrun Haibel,Judith Rademacher,Murat Torğutalp,R. Lambert,Xenofon Baraliakos,Walter P. Maksymowych,Janis L. Vahldiek,Denis Poddubnyy
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (3): 655-665 被引量:52
标识
DOI:10.1148/radiol.212526
摘要

Background MRI is frequently used for early diagnosis of axial spondyloarthritis (axSpA). However, evaluation is time-consuming and requires profound expertise because noninflammatory degenerative changes can mimic axSpA, and early signs may therefore be missed. Deep neural networks could function as assistance for axSpA detection. Purpose To create a deep neural network to detect MRI changes in sacroiliac joints indicative of axSpA. Materials and Methods This retrospective multicenter study included MRI examinations of five cohorts of patients with clinical suspicion of axSpA collected at university and community hospitals between January 2006 and September 2020. Data from four cohorts were used as the training set, and data from one cohort as the external test set. Each MRI examination in the training and test sets was scored by six and seven raters, respectively, for inflammatory changes (bone marrow edema, enthesitis) and structural changes (erosions, sclerosis). A deep learning tool to detect changes indicative of axSpA was developed. First, a neural network to homogenize the images, then a classification network were trained. Performance was evaluated with use of area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. P < .05 was considered indicative of statistically significant difference. Results Overall, 593 patients (mean age, 37 years ± 11 [SD]; 302 women) were studied. Inflammatory and structural changes were found in 197 of 477 patients (41%) and 244 of 477 (51%), respectively, in the training set and 25 of 116 patients (22%) and 26 of 116 (22%) in the test set. The AUCs were 0.94 (95% CI: 0.84, 0.97) for all inflammatory changes, 0.88 (95% CI: 0.80, 0.95) for inflammatory changes fulfilling the Assessment of SpondyloArthritis international Society definition, and 0.89 (95% CI: 0.81, 0.96) for structural changes indicative of axSpA. Sensitivity and specificity on the external test set were 22 of 25 patients (88%) and 65 of 91 patients (71%), respectively, for inflammatory changes and 22 of 26 patients (85%) and 70 of 90 patients (78%) for structural changes. Conclusion Deep neural networks can detect inflammatory or structural changes to the sacroiliac joint indicative of axial spondyloarthritis at MRI. © RSNA, 2022 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩嘉琦发布了新的文献求助10
1秒前
1秒前
zz关闭了zz文献求助
1秒前
桐桐应助阿绫采纳,获得10
1秒前
1秒前
1秒前
xiaoma发布了新的文献求助10
2秒前
柠檬小丸子完成签到 ,获得积分20
2秒前
颖123发布了新的文献求助10
2秒前
王钟萱完成签到,获得积分10
3秒前
3秒前
李博士完成签到,获得积分10
3秒前
3秒前
冬柳发布了新的文献求助10
3秒前
lincsh发布了新的文献求助10
3秒前
4秒前
Apriouo完成签到 ,获得积分10
4秒前
陈陈发布了新的文献求助10
4秒前
高高以松完成签到,获得积分10
5秒前
Acrome完成签到 ,获得积分10
6秒前
7秒前
cocopan发布了新的文献求助10
7秒前
荷珠发布了新的文献求助10
7秒前
Harlotte完成签到 ,获得积分0
9秒前
9秒前
小禾一定行完成签到 ,获得积分10
9秒前
10秒前
12秒前
海浪完成签到 ,获得积分10
12秒前
高洁完成签到,获得积分10
13秒前
dyjjudy发布了新的文献求助10
13秒前
陈陈完成签到,获得积分10
14秒前
15秒前
李健的小迷弟应助半胖采纳,获得10
15秒前
Hello应助个性的荆采纳,获得10
16秒前
是why耶发布了新的文献求助30
17秒前
享受仅有的拥有完成签到,获得积分10
17秒前
大模型应助小粥采纳,获得10
18秒前
可爱的函函应助老铁子采纳,获得30
18秒前
xiao发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901