Deep Learning Detects Changes Indicative of Axial Spondyloarthritis at MRI of Sacroiliac Joints

医学 骶髂关节炎 队列 末端炎 接收机工作特性 强直性脊柱炎 回顾性队列研究 磁共振成像 轴性脊柱炎 放射科 内科学 物理疗法 关节炎 银屑病性关节炎
作者
Keno K. Bressem,Lisa C. Adams,Fabian Proft,Kay‐Geert Hermann,Torsten Diekhoff,Laura Spiller,Stefan M. Niehues,Marcus R. Makowski,Bernd Hamm,Mikhail Protopopov,Valeria Ríos Rodríguez,Hildrun Haibel,Judith Rademacher,Murat Torğutalp,R. Lambert,Xenofon Baraliakos,Walter P. Maksymowych,Janis L. Vahldiek,Denis Poddubnyy
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (3): 655-665 被引量:52
标识
DOI:10.1148/radiol.212526
摘要

Background MRI is frequently used for early diagnosis of axial spondyloarthritis (axSpA). However, evaluation is time-consuming and requires profound expertise because noninflammatory degenerative changes can mimic axSpA, and early signs may therefore be missed. Deep neural networks could function as assistance for axSpA detection. Purpose To create a deep neural network to detect MRI changes in sacroiliac joints indicative of axSpA. Materials and Methods This retrospective multicenter study included MRI examinations of five cohorts of patients with clinical suspicion of axSpA collected at university and community hospitals between January 2006 and September 2020. Data from four cohorts were used as the training set, and data from one cohort as the external test set. Each MRI examination in the training and test sets was scored by six and seven raters, respectively, for inflammatory changes (bone marrow edema, enthesitis) and structural changes (erosions, sclerosis). A deep learning tool to detect changes indicative of axSpA was developed. First, a neural network to homogenize the images, then a classification network were trained. Performance was evaluated with use of area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. P < .05 was considered indicative of statistically significant difference. Results Overall, 593 patients (mean age, 37 years ± 11 [SD]; 302 women) were studied. Inflammatory and structural changes were found in 197 of 477 patients (41%) and 244 of 477 (51%), respectively, in the training set and 25 of 116 patients (22%) and 26 of 116 (22%) in the test set. The AUCs were 0.94 (95% CI: 0.84, 0.97) for all inflammatory changes, 0.88 (95% CI: 0.80, 0.95) for inflammatory changes fulfilling the Assessment of SpondyloArthritis international Society definition, and 0.89 (95% CI: 0.81, 0.96) for structural changes indicative of axSpA. Sensitivity and specificity on the external test set were 22 of 25 patients (88%) and 65 of 91 patients (71%), respectively, for inflammatory changes and 22 of 26 patients (85%) and 70 of 90 patients (78%) for structural changes. Conclusion Deep neural networks can detect inflammatory or structural changes to the sacroiliac joint indicative of axial spondyloarthritis at MRI. © RSNA, 2022 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoze完成签到 ,获得积分10
1秒前
Rylee完成签到,获得积分10
1秒前
JamesPei应助顶天立地采纳,获得10
2秒前
妖精完成签到 ,获得积分10
3秒前
zxt发布了新的文献求助10
3秒前
caiia完成签到,获得积分20
3秒前
兰兰猪头完成签到,获得积分20
4秒前
三得利的乌龙茶完成签到 ,获得积分10
4秒前
斯文败类应助英勇的醉蓝采纳,获得10
6秒前
Qing完成签到,获得积分10
7秒前
一颗煤炭完成签到 ,获得积分0
9秒前
hczong完成签到,获得积分10
10秒前
靓丽的悒完成签到 ,获得积分10
11秒前
11秒前
DDDD发布了新的文献求助10
11秒前
Rylee完成签到,获得积分10
12秒前
12秒前
楼马完成签到 ,获得积分10
13秒前
采花大盗完成签到,获得积分10
15秒前
李静发布了新的文献求助10
15秒前
乱世完成签到,获得积分10
16秒前
16秒前
顶天立地发布了新的文献求助10
17秒前
lxl220发布了新的文献求助10
20秒前
fsf完成签到,获得积分10
21秒前
深情安青应助whisper采纳,获得10
22秒前
zcbb完成签到,获得积分10
22秒前
小齐爱科研完成签到,获得积分10
22秒前
田様应助贪玩的幻姬采纳,获得20
26秒前
撒旦asd发布了新的文献求助10
26秒前
zxt发布了新的文献求助10
27秒前
墨林完成签到,获得积分10
28秒前
28秒前
动听的谷秋完成签到 ,获得积分10
29秒前
正午完成签到,获得积分10
30秒前
30秒前
niuya发布了新的文献求助10
32秒前
35秒前
chen完成签到,获得积分10
36秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688879
关于积分的说明 14856774
捐赠科研通 4696188
什么是DOI,文献DOI怎么找? 2541118
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851