Deep Learning Detects Changes Indicative of Axial Spondyloarthritis at MRI of Sacroiliac Joints

医学 骶髂关节炎 队列 末端炎 接收机工作特性 强直性脊柱炎 回顾性队列研究 磁共振成像 轴性脊柱炎 放射科 内科学 关节炎 银屑病性关节炎
作者
Keno K. Bressem,Lisa C. Adams,Fabian Proft,Kay-Geert A. Hermann,Torsten Diekhoff,Laura Spiller,Stefan M. Niehues,Marcus R. Makowski,Bernd Hamm,Mikhail Protopopov,Fabian Proft,Hildrun Haibel,J. Rademacher,Murat Torgutalp,Robert G. W. Lambert,Xenofon Baraliakos,Walter P. Maksymowych,Janis L Vahldiek,Denis Poddubnyy
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (3): 655-665 被引量:4
标识
DOI:10.1148/radiol.212526
摘要

Background MRI is frequently used for early diagnosis of axial spondyloarthritis (axSpA). However, evaluation is time-consuming and requires profound expertise because noninflammatory degenerative changes can mimic axSpA, and early signs may therefore be missed. Deep neural networks could function as assistance for axSpA detection. Purpose To create a deep neural network to detect MRI changes in sacroiliac joints indicative of axSpA. Materials and Methods This retrospective multicenter study included MRI examinations of five cohorts of patients with clinical suspicion of axSpA collected at university and community hospitals between January 2006 and September 2020. Data from four cohorts were used as the training set, and data from one cohort as the external test set. Each MRI examination in the training and test sets was scored by six and seven raters, respectively, for inflammatory changes (bone marrow edema, enthesitis) and structural changes (erosions, sclerosis). A deep learning tool to detect changes indicative of axSpA was developed. First, a neural network to homogenize the images, then a classification network were trained. Performance was evaluated with use of area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. P < .05 was considered indicative of statistically significant difference. Results Overall, 593 patients (mean age, 37 years ± 11 [SD]; 302 women) were studied. Inflammatory and structural changes were found in 197 of 477 patients (41%) and 244 of 477 (51%), respectively, in the training set and 25 of 116 patients (22%) and 26 of 116 (22%) in the test set. The AUCs were 0.94 (95% CI: 0.84, 0.97) for all inflammatory changes, 0.88 (95% CI: 0.80, 0.95) for inflammatory changes fulfilling the Assessment of SpondyloArthritis international Society definition, and 0.89 (95% CI: 0.81, 0.96) for structural changes indicative of axSpA. Sensitivity and specificity on the external test set were 22 of 25 patients (88%) and 65 of 91 patients (71%), respectively, for inflammatory changes and 22 of 26 patients (85%) and 70 of 90 patients (78%) for structural changes. Conclusion Deep neural networks can detect inflammatory or structural changes to the sacroiliac joint indicative of axial spondyloarthritis at MRI. © RSNA, 2022 Online supplemental material is available for this article. An earlier incorrect version appeared online. This article was corrected on February 7, 2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
minguk完成签到,获得积分20
1秒前
小飞飞发布了新的文献求助10
2秒前
大气的雁桃完成签到,获得积分10
3秒前
apt完成签到,获得积分10
4秒前
hbkj完成签到,获得积分10
4秒前
飞翔的星尘完成签到,获得积分10
4秒前
雍州小铁匠完成签到 ,获得积分10
4秒前
雾失楼台完成签到,获得积分10
5秒前
斯文败类应助ee采纳,获得10
5秒前
贪玩亿先完成签到,获得积分10
6秒前
我爱读文献完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助30
7秒前
研友_Z3342Z完成签到,获得积分10
8秒前
占希完成签到,获得积分10
8秒前
高灵雨完成签到,获得积分10
9秒前
9秒前
yuan完成签到 ,获得积分10
9秒前
夏侯初完成签到,获得积分0
10秒前
ipcy完成签到 ,获得积分10
10秒前
Singularity应助jinjun采纳,获得10
11秒前
燕子完成签到,获得积分10
11秒前
ldy完成签到,获得积分10
11秒前
怕孤单的若颜完成签到,获得积分10
12秒前
bellaluna完成签到,获得积分10
12秒前
小羊完成签到 ,获得积分10
13秒前
ok完成签到,获得积分10
13秒前
霸气的念云完成签到,获得积分10
13秒前
ly完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
顺心的书包完成签到,获得积分10
15秒前
zfh完成签到 ,获得积分10
16秒前
重要凝芙发布了新的文献求助10
16秒前
内向翰完成签到,获得积分10
17秒前
Hang发布了新的文献求助10
17秒前
bluehand完成签到,获得积分10
17秒前
犹豫代曼完成签到,获得积分10
18秒前
一一完成签到,获得积分10
18秒前
xjz240221完成签到 ,获得积分10
18秒前
共享精神应助scm采纳,获得20
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666543
求助须知:如何正确求助?哪些是违规求助? 3225581
关于积分的说明 9763593
捐赠科研通 2935426
什么是DOI,文献DOI怎么找? 1607675
邀请新用户注册赠送积分活动 759302
科研通“疑难数据库(出版商)”最低求助积分说明 735214