清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning Detects Changes Indicative of Axial Spondyloarthritis at MRI of Sacroiliac Joints

医学 骶髂关节炎 队列 末端炎 接收机工作特性 强直性脊柱炎 回顾性队列研究 磁共振成像 轴性脊柱炎 放射科 内科学 关节炎 银屑病性关节炎
作者
Keno K. Bressem,Lisa C. Adams,Fabian Proft,Kay-Geert A. Hermann,Torsten Diekhoff,Laura Spiller,Stefan M. Niehues,Marcus R. Makowski,Bernd Hamm,Mikhail Protopopov,Fabian Proft,Hildrun Haibel,J. Rademacher,Murat Torgutalp,Robert G. W. Lambert,Xenofon Baraliakos,Walter P. Maksymowych,Janis L Vahldiek,Denis Poddubnyy
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (3): 655-665 被引量:4
标识
DOI:10.1148/radiol.212526
摘要

Background MRI is frequently used for early diagnosis of axial spondyloarthritis (axSpA). However, evaluation is time-consuming and requires profound expertise because noninflammatory degenerative changes can mimic axSpA, and early signs may therefore be missed. Deep neural networks could function as assistance for axSpA detection. Purpose To create a deep neural network to detect MRI changes in sacroiliac joints indicative of axSpA. Materials and Methods This retrospective multicenter study included MRI examinations of five cohorts of patients with clinical suspicion of axSpA collected at university and community hospitals between January 2006 and September 2020. Data from four cohorts were used as the training set, and data from one cohort as the external test set. Each MRI examination in the training and test sets was scored by six and seven raters, respectively, for inflammatory changes (bone marrow edema, enthesitis) and structural changes (erosions, sclerosis). A deep learning tool to detect changes indicative of axSpA was developed. First, a neural network to homogenize the images, then a classification network were trained. Performance was evaluated with use of area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. P < .05 was considered indicative of statistically significant difference. Results Overall, 593 patients (mean age, 37 years ± 11 [SD]; 302 women) were studied. Inflammatory and structural changes were found in 197 of 477 patients (41%) and 244 of 477 (51%), respectively, in the training set and 25 of 116 patients (22%) and 26 of 116 (22%) in the test set. The AUCs were 0.94 (95% CI: 0.84, 0.97) for all inflammatory changes, 0.88 (95% CI: 0.80, 0.95) for inflammatory changes fulfilling the Assessment of SpondyloArthritis international Society definition, and 0.89 (95% CI: 0.81, 0.96) for structural changes indicative of axSpA. Sensitivity and specificity on the external test set were 22 of 25 patients (88%) and 65 of 91 patients (71%), respectively, for inflammatory changes and 22 of 26 patients (85%) and 70 of 90 patients (78%) for structural changes. Conclusion Deep neural networks can detect inflammatory or structural changes to the sacroiliac joint indicative of axial spondyloarthritis at MRI. © RSNA, 2022 Online supplemental material is available for this article. An earlier incorrect version appeared online. This article was corrected on February 7, 2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
可爱的函函应助悠悠采纳,获得10
14秒前
郜南烟发布了新的文献求助10
20秒前
包容新蕾完成签到 ,获得积分10
1分钟前
有人应助科研通管家采纳,获得30
1分钟前
1分钟前
悠悠发布了新的文献求助10
1分钟前
悠悠完成签到,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
2分钟前
边曦完成签到 ,获得积分10
2分钟前
张振宇完成签到 ,获得积分10
2分钟前
Arthur完成签到 ,获得积分10
2分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
康康XY完成签到 ,获得积分10
3分钟前
muriel完成签到,获得积分10
3分钟前
有人应助科研通管家采纳,获得30
3分钟前
有人应助科研通管家采纳,获得30
3分钟前
闪闪的谷梦完成签到 ,获得积分10
4分钟前
范白容完成签到 ,获得积分10
5分钟前
肆肆完成签到,获得积分10
6分钟前
刘刘完成签到 ,获得积分10
6分钟前
JueruiWang1258完成签到,获得积分10
6分钟前
有人应助科研通管家采纳,获得10
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
tingyeh完成签到,获得积分10
7分钟前
甜甜玫瑰应助baolong采纳,获得10
7分钟前
丹妮完成签到 ,获得积分10
7分钟前
liuzhigang完成签到 ,获得积分10
7分钟前
有人应助科研通管家采纳,获得10
9分钟前
有人应助科研通管家采纳,获得10
9分钟前
有人应助科研通管家采纳,获得10
9分钟前
有人应助科研通管家采纳,获得10
9分钟前
有人应助科研通管家采纳,获得10
9分钟前
baolong完成签到,获得积分10
9分钟前
jeff发布了新的文献求助30
9分钟前
姚老表完成签到,获得积分10
10分钟前
爆米花应助hani采纳,获得10
10分钟前
有人应助科研通管家采纳,获得10
11分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826669
捐赠科研通 2454589
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527