Optimal combustion calibration for direct-injection compression-ignition engines using multiple injections

喷油器 点火系统 校准 控制理论(社会学) 燃油喷射 燃烧 燃料效率 平均有效压力 均质压燃 汽车工程 压缩(物理) 废气再循环 压缩比 计算机科学 内燃机 工程类 数学 燃烧室 化学 机械工程 材料科学 控制(管理) 统计 有机化学 人工智能 复合材料 航空航天工程
作者
Giordano Moretto,Severin Hänggi,Christopher H. Onder
出处
期刊:International Journal of Engine Research [SAGE]
卷期号:: 146808742210879-146808742210879 被引量:1
标识
DOI:10.1177/14680874221087969
摘要

Multiple injections are widely used for direct-injection compression-ignition engines to mainly increase efficiency, lower pollutant emissions, and increase exhaust enthalpy. However, with each additional injection the degrees of freedom increase, which makes finding an optimal injection input by design of experiments a time-consuming task. In this paper, we present a model-based calibration method that determines the number of injections for a predefined set of requirements. First, we derive a zero-dimensional crank-angle-resolved cylinder process model based on first principles. The model includes a fuel injector and requires a low calibration effort. Second, we use this model in an optimal control problem that minimizes the fuel consumption subject to several constraints such as load, maximal pressure, maximal pressure gradient, engine-out temperature, and the limitations of the fuel injector. The optimal injector inputs are used as feedforward control signals on a real engine to validate the simulative results. In general, the experimental results are in good agreement with those obtained in simulations. Finally, we compare our approach to a state-of-the-art method known as pressure reference tracking which consists of two separate steps: the creation of an optimal pressure reference and the tracking by a discrete injector. We show that our method, which combines these two steps in a single optimization problem, results in an increase in indicated efficiency compared to the solution obtained by pressure reference tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助莉莉采纳,获得10
刚刚
在水一方应助空洛采纳,获得20
刚刚
Drlee发布了新的文献求助10
1秒前
aw完成签到,获得积分10
2秒前
福宝发布了新的文献求助10
4秒前
MOLLY完成签到,获得积分10
9秒前
9秒前
9秒前
downloadpapers完成签到,获得积分10
10秒前
XJ完成签到,获得积分10
15秒前
16秒前
年轻水壶完成签到 ,获得积分10
17秒前
18秒前
脑洞疼应助喵喵采纳,获得30
18秒前
一蓑烟雨任平生应助mh_yang采纳,获得10
18秒前
积极乐观阳光开朗完成签到,获得积分10
20秒前
21秒前
南风知我意完成签到,获得积分10
22秒前
22秒前
whisper完成签到,获得积分10
23秒前
colin发布了新的文献求助10
25秒前
26秒前
好吃马匹发布了新的文献求助10
26秒前
英俊的铭应助LJT采纳,获得10
27秒前
小蘑菇应助无情飞风采纳,获得10
27秒前
justsayit完成签到 ,获得积分10
29秒前
30秒前
大饼发布了新的文献求助30
31秒前
Hello应助Guo采纳,获得10
31秒前
31秒前
小冯住院医师完成签到,获得积分10
32秒前
NexusExplorer应助tkdzjr12345采纳,获得10
33秒前
33秒前
易达发布了新的文献求助10
34秒前
所所应助半山采纳,获得30
35秒前
小二郎应助晴天采纳,获得10
37秒前
碧蓝的友儿完成签到 ,获得积分10
37秒前
38秒前
科研通AI2S应助lgh采纳,获得10
38秒前
cfplhys发布了新的文献求助10
38秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346345
求助须知:如何正确求助?哪些是违规求助? 2973142
关于积分的说明 8657815
捐赠科研通 2653539
什么是DOI,文献DOI怎么找? 1453184
科研通“疑难数据库(出版商)”最低求助积分说明 672782
邀请新用户注册赠送积分活动 662665