Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of Radiologists

医学 射线照相术 放射科 肺结核 肺结核 医学物理学 核医学 病理
作者
Sahar Kazemzadeh,Jin Yu,Shahar Jamshy,Rory Pilgrim,Zaid Nabulsi,Christina Chen,Neeral Beladia,Charles T. Lau,Scott Mayer McKinney,T. A. Hughes,Atilla P. Kiraly,Sreenivasa Raju Kalidindi,Monde Muyoyeta,Jameson Malemela,Ting Shih,Greg S. Corrado,Lily Peng,Katherine Chou,Po-Hsuan Cameron Chen,Yun Liu,Krishnan Eswaran,Daniel Tse,Shravya Shetty,Shruthi Prabhakara
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (1): 124-137 被引量:24
标识
DOI:10.1148/radiol.212213
摘要

Background The World Health Organization (WHO) recommends chest radiography to facilitate tuberculosis (TB) screening. However, chest radiograph interpretation expertise remains limited in many regions. Purpose To develop a deep learning system (DLS) to detect active pulmonary TB on chest radiographs and compare its performance to that of radiologists. Materials and Methods A DLS was trained and tested using retrospective chest radiographs (acquired between 1996 and 2020) from 10 countries. To improve generalization, large-scale chest radiograph pretraining, attention pooling, and semisupervised learning ("noisy-student") were incorporated. The DLS was evaluated in a four-country test set (China, India, the United States, and Zambia) and in a mining population in South Africa, with positive TB confirmed with microbiological tests or nucleic acid amplification testing (NAAT). The performance of the DLS was compared with that of 14 radiologists. The authors studied the efficacy of the DLS compared with that of nine radiologists using the Obuchowski-Rockette-Hillis procedure. Given WHO targets of 90% sensitivity and 70% specificity, the operating point of the DLS (0.45) was prespecified to favor sensitivity. Results A total of 165 754 images in 22 284 subjects (mean age, 45 years; 21% female) were used for model development and testing. In the four-country test set (1236 subjects, 17% with active TB), the receiver operating characteristic (ROC) curve of the DLS was higher than those for all nine India-based radiologists, with an area under the ROC curve of 0.89 (95% CI: 0.87, 0.91). Compared with these radiologists, at the prespecified operating point, the DLS sensitivity was higher (88% vs 75%, P < .001) and specificity was noninferior (79% vs 84%, P = .004). Trends were similar within other patient subgroups, in the South Africa data set, and across various TB-specific chest radiograph findings. In simulations, the use of the DLS to identify likely TB-positive chest radiographs for NAAT confirmation reduced the cost by 40%-80% per TB-positive patient detected. Conclusion A deep learning method was found to be noninferior to radiologists for the determination of active tuberculosis on digital chest radiographs. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by van Ginneken in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
orixero应助strings采纳,获得10
4秒前
5秒前
浅泽发布了新的文献求助10
5秒前
方方发布了新的文献求助30
7秒前
7秒前
有人应助阿尼亚采纳,获得10
9秒前
10秒前
清清完成签到,获得积分10
10秒前
11秒前
踏实梦菲发布了新的文献求助10
11秒前
陶治发布了新的文献求助10
13秒前
15秒前
明理的慕青完成签到,获得积分20
16秒前
要减肥朋友完成签到,获得积分10
16秒前
16秒前
修勾完成签到 ,获得积分10
17秒前
20秒前
23秒前
充电宝应助wenrui采纳,获得20
25秒前
医生科学家完成签到 ,获得积分10
26秒前
27秒前
浅泽完成签到,获得积分10
28秒前
绿麦盲区完成签到 ,获得积分10
30秒前
涨芝士完成签到 ,获得积分10
30秒前
zzy完成签到,获得积分10
31秒前
31秒前
32秒前
喜悦的向日葵完成签到,获得积分10
32秒前
撒大苏打完成签到,获得积分10
33秒前
ferritin完成签到 ,获得积分10
33秒前
阿飞发布了新的文献求助10
33秒前
生动烙完成签到,获得积分10
34秒前
sx完成签到 ,获得积分10
34秒前
36秒前
天天快乐应助susu采纳,获得10
36秒前
37秒前
疯丫头完成签到,获得积分10
38秒前
传奇3应助Amber采纳,获得10
40秒前
斯文败类应助氯化镁采纳,获得10
42秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2791011
关于积分的说明 7797468
捐赠科研通 2447398
什么是DOI,文献DOI怎么找? 1301879
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194