Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of Radiologists

医学 射线照相术 放射科 肺结核 肺结核 医学物理学 核医学 病理
作者
Sahar Kazemzadeh,Jin Yu,Shahar Jamshy,Rory Pilgrim,Zaid Nabulsi,Christina Chen,Neeral Beladia,Charles T. Lau,Scott Mayer McKinney,T. A. Hughes,Atilla P. Kiraly,Sreenivasa Raju Kalidindi,Monde Muyoyeta,Jameson Malemela,Ting Shih,Greg S. Corrado,Lily Peng,Katherine Chou,Po-Hsuan Cameron Chen,Yun Liu,Krishnan Eswaran,Daniel Tse,Shravya Shetty,Shruthi Prabhakara
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (1): 124-137 被引量:24
标识
DOI:10.1148/radiol.212213
摘要

Background The World Health Organization (WHO) recommends chest radiography to facilitate tuberculosis (TB) screening. However, chest radiograph interpretation expertise remains limited in many regions. Purpose To develop a deep learning system (DLS) to detect active pulmonary TB on chest radiographs and compare its performance to that of radiologists. Materials and Methods A DLS was trained and tested using retrospective chest radiographs (acquired between 1996 and 2020) from 10 countries. To improve generalization, large-scale chest radiograph pretraining, attention pooling, and semisupervised learning ("noisy-student") were incorporated. The DLS was evaluated in a four-country test set (China, India, the United States, and Zambia) and in a mining population in South Africa, with positive TB confirmed with microbiological tests or nucleic acid amplification testing (NAAT). The performance of the DLS was compared with that of 14 radiologists. The authors studied the efficacy of the DLS compared with that of nine radiologists using the Obuchowski-Rockette-Hillis procedure. Given WHO targets of 90% sensitivity and 70% specificity, the operating point of the DLS (0.45) was prespecified to favor sensitivity. Results A total of 165 754 images in 22 284 subjects (mean age, 45 years; 21% female) were used for model development and testing. In the four-country test set (1236 subjects, 17% with active TB), the receiver operating characteristic (ROC) curve of the DLS was higher than those for all nine India-based radiologists, with an area under the ROC curve of 0.89 (95% CI: 0.87, 0.91). Compared with these radiologists, at the prespecified operating point, the DLS sensitivity was higher (88% vs 75%, P < .001) and specificity was noninferior (79% vs 84%, P = .004). Trends were similar within other patient subgroups, in the South Africa data set, and across various TB-specific chest radiograph findings. In simulations, the use of the DLS to identify likely TB-positive chest radiographs for NAAT confirmation reduced the cost by 40%-80% per TB-positive patient detected. Conclusion A deep learning method was found to be noninferior to radiologists for the determination of active tuberculosis on digital chest radiographs. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by van Ginneken in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
mm完成签到,获得积分10
2秒前
LUAN完成签到,获得积分10
2秒前
兆丰发布了新的文献求助10
2秒前
专注的语堂完成签到,获得积分10
2秒前
有kj发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
水之发布了新的文献求助10
4秒前
赘婿应助pipiap采纳,获得10
4秒前
linyanmei完成签到,获得积分20
4秒前
coco关注了科研通微信公众号
4秒前
脑洞疼应助个性跳跳糖采纳,获得10
6秒前
CC发布了新的文献求助150
6秒前
一个酸葡萄干完成签到,获得积分20
6秒前
璃鱼完成签到 ,获得积分10
6秒前
acca发布了新的文献求助10
6秒前
6秒前
Hathaway完成签到,获得积分10
7秒前
uuuu完成签到 ,获得积分10
7秒前
cs发布了新的文献求助10
7秒前
galaxy发布了新的文献求助30
7秒前
lerwin发布了新的文献求助10
9秒前
李爱国应助小赵很努力采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
海风关注了科研通微信公众号
13秒前
14秒前
14秒前
15秒前
复杂豆芽完成签到 ,获得积分10
15秒前
15秒前
拾柒完成签到 ,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743234
求助须知:如何正确求助?哪些是违规求助? 5413106
关于积分的说明 15347071
捐赠科研通 4884098
什么是DOI,文献DOI怎么找? 2625582
邀请新用户注册赠送积分活动 1574482
关于科研通互助平台的介绍 1531345