nnUNet-based Multi-modality Breast MRI Segmentation and Tissue-Delineating Phantom for Robotic Tumor Surgery Planning

分割 人工智能 手术计划 乳房磁振造影 计算机科学 成像体模 深度学习 模态(人机交互) 图像分割 放射科 乳腺癌 计算机视觉 医学 乳腺摄影术 癌症 内科学
作者
Motaz Alqaoud,John Plemmons,Eric Feliberti,Siqin Dong,Krishnanand N. Kaipa,Gábor Fichtinger,Yiming Xiao,Michel Audette
标识
DOI:10.1109/embc48229.2022.9871109
摘要

Segmentation of the thoracic region and breast tissues is crucial for analyzing and diagnosing the presence of breast masses. This paper introduces a medical image segmentation architecture that aggregates two neural networks based on the state-of-the-art nnU-Net. Additionally, this study proposes a polyvinyl alcohol cryogel (PVA-C) breast phantom, based on its automated segmentation approach, to enable planning and navigation experiments for robotic breast surgery. The dataset consists of multimodality breast MRI of T2W and STIR images obtained from 10 patients. A statistical analysis of segmentation tasks emphasizes the Dice Similarity Coefficient (DSC), segmentation accuracy, sensitivity, and specificity. We first use a single class labeling to segment the breast region and then exploit it as an input for three-class labeling to segment fatty, fibroglandular (FGT), and tumorous tissues. The first network has a 0.95 DCS, while the second network has a 0.95, 0.83, and 0.41 for fat, FGT, and tumor classes, respectively. Clinical Relevance—This research is relevant to the breast surgery community as it establishes a deep learning-based (DL) algorithmic and phantomic foundation for surgical planning and navigation that will exploit preoperative multimodal MRI and intraoperative ultrasound to achieve highly cosmetic breast surgery. In addition, the planning and navigation will guide a robot that can cut, resect, bag, and grasp a tissue mass that encapsulates breast tumors and positive tissue margins. This image-guided robotic approach promises to potentiate the accuracy of breast surgeons and improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
totoo2021应助vv采纳,获得10
1秒前
现代半山完成签到 ,获得积分10
2秒前
Alps发布了新的文献求助10
4秒前
小番茄完成签到 ,获得积分10
4秒前
宁不言发布了新的文献求助10
4秒前
145263发布了新的文献求助10
5秒前
1278day发布了新的文献求助10
5秒前
5秒前
6秒前
ljf完成签到,获得积分20
7秒前
7秒前
7秒前
pluto应助火星上映易采纳,获得10
8秒前
花落云舒完成签到,获得积分10
9秒前
11发布了新的文献求助10
11秒前
幽默的蜡烛完成签到 ,获得积分10
11秒前
城北徐公发布了新的文献求助10
11秒前
Eureka发布了新的文献求助10
13秒前
烟花应助xiepeijuan采纳,获得10
13秒前
18秒前
18秒前
小黄完成签到 ,获得积分10
18秒前
xiaoma完成签到,获得积分10
19秒前
李爱国应助景j采纳,获得10
19秒前
小慈爱鸡完成签到 ,获得积分10
20秒前
搜集达人应助啦啦啦采纳,获得10
22秒前
深情安青应助朱宸采纳,获得10
22秒前
共享精神应助ddd采纳,获得10
22秒前
爱撒娇的惮应助Xhhaai采纳,获得10
22秒前
22秒前
22秒前
Fjj发布了新的文献求助10
23秒前
深情安青应助Eureka采纳,获得10
25秒前
科研橙子完成签到,获得积分10
25秒前
凯呀月啊应助旷野采纳,获得10
25秒前
26秒前
黄海发布了新的文献求助10
27秒前
cc6521发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793595
求助须知:如何正确求助?哪些是违规求助? 5750649
关于积分的说明 15486388
捐赠科研通 4920552
什么是DOI,文献DOI怎么找? 2648996
邀请新用户注册赠送积分活动 1596327
关于科研通互助平台的介绍 1550885