Efficacy and prognostic value of delta radiomics on dual-energy computed tomography for gastric cancer with neoadjuvant chemotherapy: a preliminary study

医学 无线电技术 队列 逻辑回归 核医学 癌症 放射科 化疗 内科学 肿瘤科
作者
Lingyun Wang,Yong Chen,Jingwen Tan,Yingqian Ge,Zhihan Xu,Michael Wels,Zilai Pan
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:64 (4): 1311-1321 被引量:3
标识
DOI:10.1177/02841851221123971
摘要

Background A non-invasive tool for tumor regression grade (TRG) evaluation is urgently needed for gastric cancer (GC) treated with neoadjuvant chemotherapy (NAC). Purpose To develop and validate a radiomics signature (RS) to evaluate TRG for locally advanced GC after NAC and assess its prognostic value. Material and Methods A total of 103 patients with GC treated with NAC were retrospectively recruited from April 2018 to December 2019 and were randomly allocated into a training cohort (n = 69) and a validation cohort (n = 34). Delineation was performed on both mixed and iodine-uptake images based on dual-energy computed tomography (DECT). A total of 4094 radiomics features were extracted from the pre-NAC, post-NAC, and delta feature sets. Spearman correlation and the least absolute shrinkage and selection operator were used for dimensionality reduction. Multivariable logistic regression was used for TRG evaluation and generated the optimal RS. Kaplan–Meier survival analysis with the log-rank test was implemented in an independent cohort of 40 patients to validate the prognostic value of the optimal RS. Results Three, five, and six radiomics features were finally selected for the pre-NAC, post-NAC, and delta feature sets. The delta model demonstrated the best performance in assessing TRG in both the training and the validation cohorts (AUCs=0.91 and 0.76, respectively; P>0.1). The optimal RS from the delta model showed a significant capability to predict survival in the independent cohort ( P<0.05). Conclusion Delta radiomics based on DECT images serves as a potential biomarker for TRG evaluation and shows prognostic value for patients with GC treated with NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助yutou采纳,获得10
刚刚
2秒前
3秒前
贾舒涵发布了新的文献求助10
3秒前
青岛完成签到,获得积分20
3秒前
SYLH应助Zack采纳,获得10
3秒前
4秒前
繁荣的行天完成签到,获得积分10
4秒前
大模型应助碧蓝丹烟采纳,获得10
4秒前
5秒前
5秒前
7秒前
7秒前
甜甜圈发布了新的文献求助10
7秒前
火星上犀牛完成签到,获得积分10
8秒前
xiaofeiyan发布了新的文献求助10
9秒前
上官若男应助林昀采纳,获得10
9秒前
烟花应助笑点低的鸿采纳,获得10
9秒前
田様应助等待的飞阳采纳,获得10
9秒前
10秒前
苏比努尔发布了新的文献求助10
10秒前
10秒前
djy发布了新的文献求助10
10秒前
乐乐应助wuhan_wuhan采纳,获得10
10秒前
大个应助司空豁采纳,获得10
10秒前
阿黑路西发布了新的文献求助10
11秒前
yincy发布了新的文献求助20
11秒前
11秒前
12秒前
tong完成签到,获得积分10
12秒前
Loooong应助白兔采纳,获得20
13秒前
CipherSage应助白兔采纳,获得10
13秒前
Aythunder发布了新的文献求助10
14秒前
一个橡果完成签到,获得积分10
14秒前
pocky完成签到,获得积分10
14秒前
TPZJS发布了新的文献求助10
14秒前
15秒前
shiyu发布了新的文献求助10
15秒前
Jasper应助家伟采纳,获得10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502568
关于积分的说明 11108738
捐赠科研通 3233292
什么是DOI,文献DOI怎么找? 1787239
邀请新用户注册赠送积分活动 870565
科研通“疑难数据库(出版商)”最低求助积分说明 802122