控制理论(社会学)
执行机构
区间(图论)
控制器(灌溉)
Lyapunov稳定性
模糊逻辑
计算机科学
伯努利原理
模糊控制系统
非线性系统
理论(学习稳定性)
事件(粒子物理)
自适应控制
控制工程
控制(管理)
工程类
数学
人工智能
物理
组合数学
量子力学
机器学习
农学
生物
航空航天工程
作者
Jing Zhao,Yang Xiao,Zhongchao Liang,Pak Kin Wong,Zhengchao Xie,Xiaoguang Ma
出处
期刊:IEEE Transactions on Transportation Electrification
日期:2022-09-05
卷期号:9 (1): 254-265
被引量:15
标识
DOI:10.1109/tte.2022.3204354
摘要
This article presents an adaptive event-triggered dynamic output feedback interval type-2 (IT-2) T-S fuzzy control method for autonomous electric vehicle systems. First, the IT-2 T-S fuzzy model is introduced to describe the nonlinear lateral dynamics of the vehicle systems. Second, a novel adaptive event-triggered strategy is designed to reduce the computational burden. Third, the phenomenon of intermittent measurements is depicted by the Bernoulli random distributed process, and the failure of the actuator is also included. According to the Lyapunov stability theory, an IT-2 T-S fuzzy dynamic output feedback controller (DOFC) is presented to ensure the random stability and performance of the vehicle systems. Finally, the effectiveness and real-time performance of the proposed control strategy are verified via numerical simulation and a hardware-in-the-loop (HIL) test platform.
科研通智能强力驱动
Strongly Powered by AbleSci AI