Unsupervised Self-Correlated Learning Smoothy Enhanced Locality Preserving Graph Convolution Embedding Clustering for Hyperspectral Images

聚类分析 模式识别(心理学) 人工智能 计算机科学 地点 相关聚类 特征学习 高光谱成像 图形 嵌入 卷积神经网络 理论计算机科学 哲学 语言学
作者
Yao Ding,Zhili Zhang,Xiaofeng Zhao,Wei Cai,Nengjun Yang,Haojie Hu,Xianxiang Huang,Yuan Cao,Weiwei Cai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:58
标识
DOI:10.1109/tgrs.2022.3202865
摘要

Hyperspectral image (HSI) clustering is an extremely fundamental but challenging task with no labeled samples. Deep clustering methods have attracted increasing attention and have achieved remarkable success in HSI classification. However, most existing clustering methods are ineffective for large-scale HSI, due to their poor robustness, adaptability, and feature presentation. In this paper, to address these issues, we introduce unsupervised self-correlated learning smoothy enhanced locality preserving graph convolution embedding clustering (S2LGCC) for large-scale HSI. Specifically, the spectral-spatial transformation is introduced to transform the original HSI into a graph while preserving the local spectral features and spatial structures. After that, a locality preserving graph convolutional embedding encoder is designed to learn the hidden representation from the graph, in which the deep layer-wise graph convolutional network (LGAT) is proposed to preserve the adaptive layer-wise locality features. In addition, the self-correlated learning smoothy module is developed to learn the smoothy information and the non-local relationship in the hidden representation space for clustering. Finally, a self-training strategy is proposed to cluster the graph node, in which a self-training clustering objective employs soft labels to supervise the clustering process. The proposed S2LGCC is jointly optimized by the fusion graph reconstruction loss and self-training clustering loss, and the two benefit each other. On IP, Salinas, and UH2013 datasets, the OAs of our S2LGCC are 71.76%, 82.61%, and 63.82%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
觅柔应助嘻哈采纳,获得10
2秒前
4秒前
Zzzzzzzz发布了新的文献求助10
4秒前
4秒前
4秒前
大卓神完成签到,获得积分10
5秒前
德克医生完成签到,获得积分10
5秒前
稳重傲儿完成签到 ,获得积分10
5秒前
SciGPT应助huiya采纳,获得10
6秒前
李暴龙完成签到,获得积分10
7秒前
罗小罗完成签到 ,获得积分10
7秒前
7秒前
hahaha发布了新的文献求助10
7秒前
9秒前
YA发布了新的文献求助10
10秒前
现代的长颈鹿完成签到,获得积分20
10秒前
夏伊发布了新的文献求助10
11秒前
李暴龙发布了新的文献求助30
11秒前
11秒前
Wenleiyang关注了科研通微信公众号
12秒前
研友_nVqwxL发布了新的文献求助10
12秒前
壁虎完成签到,获得积分10
14秒前
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
hashtag完成签到,获得积分10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
Hello应助aaaaa采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
劲秉应助科研通管家采纳,获得10
16秒前
16秒前
赘婿应助afmacf采纳,获得10
16秒前
17秒前
深渊完成签到 ,获得积分10
17秒前
18秒前
研友_GZb9an完成签到,获得积分10
18秒前
酷波er应助碳酸芙兰采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297339
求助须知:如何正确求助?哪些是违规求助? 2932791
关于积分的说明 8459159
捐赠科研通 2605576
什么是DOI,文献DOI怎么找? 1422420
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644705