Forecasting the development trend of new energy vehicles in China by an optimized fractional discrete grey power model

离散制造 功率(物理) 适应性 启发式 计算机科学 数学优化 运筹学 经济 工业工程 工程类 数学 生产(经济) 物理 管理 量子力学 宏观经济学
作者
Lianyi Liu,Sifeng Liu,Lifeng Wu,Junsheng Zhu,Gang Shang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:372: 133708-133708 被引量:45
标识
DOI:10.1016/j.jclepro.2022.133708
摘要

As an effective technology to reduce traffic pollution emissions, the new energy vehicle industry has developed rapidly in recent years, and the sales of new energy vehicles have doubled in 2021. Accurately forecasting methods provide important references for industrial policy deployment, infrastructure construction and energy demand estimation. In order to predict the development trend of China's new energy vehicle industry under the limited data samples, this paper proposes an optimized discrete grey power model to fit the nonlinear relationship between grey information factor and temporal factor. Firstly, the grey differential equation and its discrete form are directly constructed by using power accumulated data, which simplifies the integral solution process of the traditional grey power model. Secondly, fractional accumulation operator is introduced into the discrete model to ensure the new information priority of the original data. Then, the heuristic algorithm is used to accurately estimate the new parameters of the proposed model. Thirdly, the proposed discrete model is the unified form of two existing discrete grey power models, which expands the scope of modeling and has higher adaptability. Simulation experiments and two numerical cases are used to verify the effectiveness of the proposed method. Finally, the proposed method is used to predict the annual sales and ownership of new energy vehicles in China. The predicted results show that by 2025, China's new energy vehicle sales will reach 8.84 million, accounting for about 24% of the total vehicle sales, surpassing the industry development target (20%) set by the Chinese government.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
geen发布了新的文献求助10
1秒前
风清扬发布了新的文献求助10
3秒前
可爱的函函应助sqz采纳,获得10
4秒前
Labubu完成签到,获得积分10
4秒前
Huang2547完成签到,获得积分10
4秒前
思源应助shinn采纳,获得10
5秒前
5秒前
5秒前
7秒前
7秒前
YDX发布了新的文献求助10
10秒前
精明的沅发布了新的文献求助10
10秒前
大模型应助楼楼楼采纳,获得30
11秒前
12秒前
Annie发布了新的文献求助10
12秒前
victorchen发布了新的文献求助10
12秒前
13秒前
神奇机智的萌完成签到,获得积分10
15秒前
追寻翩跹完成签到,获得积分10
15秒前
星辰大海应助没有昵称采纳,获得10
16秒前
16秒前
18秒前
钙钛矿柔性完成签到,获得积分10
18秒前
18秒前
陈甸甸发布了新的文献求助10
19秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
20秒前
柯一一应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
XT发布了新的文献求助10
22秒前
spark完成签到 ,获得积分10
23秒前
shinn发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
空城旧梦发布了新的文献求助10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519700
关于积分的说明 11199305
捐赠科研通 3256034
什么是DOI,文献DOI怎么找? 1798049
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305