亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Forecasting the development trend of new energy vehicles in China by an optimized fractional discrete grey power model

离散制造 功率(物理) 适应性 启发式 计算机科学 数学优化 运筹学 经济 工业工程 工程类 数学 生产(经济) 物理 管理 量子力学 宏观经济学
作者
Lianyi Liu,Sifeng Liu,Lifeng Wu,Junsheng Zhu,Gang Shang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:372: 133708-133708 被引量:45
标识
DOI:10.1016/j.jclepro.2022.133708
摘要

As an effective technology to reduce traffic pollution emissions, the new energy vehicle industry has developed rapidly in recent years, and the sales of new energy vehicles have doubled in 2021. Accurately forecasting methods provide important references for industrial policy deployment, infrastructure construction and energy demand estimation. In order to predict the development trend of China's new energy vehicle industry under the limited data samples, this paper proposes an optimized discrete grey power model to fit the nonlinear relationship between grey information factor and temporal factor. Firstly, the grey differential equation and its discrete form are directly constructed by using power accumulated data, which simplifies the integral solution process of the traditional grey power model. Secondly, fractional accumulation operator is introduced into the discrete model to ensure the new information priority of the original data. Then, the heuristic algorithm is used to accurately estimate the new parameters of the proposed model. Thirdly, the proposed discrete model is the unified form of two existing discrete grey power models, which expands the scope of modeling and has higher adaptability. Simulation experiments and two numerical cases are used to verify the effectiveness of the proposed method. Finally, the proposed method is used to predict the annual sales and ownership of new energy vehicles in China. The predicted results show that by 2025, China's new energy vehicle sales will reach 8.84 million, accounting for about 24% of the total vehicle sales, surpassing the industry development target (20%) set by the Chinese government.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胡爱科研完成签到 ,获得积分10
3秒前
trying完成签到,获得积分10
4秒前
Grayball发布了新的文献求助30
5秒前
嘟嘟完成签到,获得积分10
20秒前
22秒前
科研通AI2S应助目夕采纳,获得10
24秒前
研友_VZG7GZ应助11111采纳,获得10
25秒前
27秒前
Alan完成签到,获得积分10
29秒前
33秒前
43秒前
44秒前
顺利奇迹发布了新的文献求助10
48秒前
我是老大应助Ooo采纳,获得10
50秒前
海绵宝宝完成签到,获得积分20
51秒前
1分钟前
冷静的黑桃完成签到,获得积分20
1分钟前
九日橙完成签到 ,获得积分10
1分钟前
非洲大象发布了新的文献求助10
1分钟前
TTTT发布了新的文献求助10
1分钟前
Louie~完成签到,获得积分10
1分钟前
隐形曼青应助舒心盼旋采纳,获得10
1分钟前
Louie~发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
eye发布了新的文献求助20
2分钟前
情怀应助QI采纳,获得10
2分钟前
探子安完成签到,获得积分10
2分钟前
打打应助Jarvis采纳,获得10
2分钟前
刻苦黎云完成签到,获得积分10
2分钟前
eye完成签到,获得积分10
2分钟前
2分钟前
QI发布了新的文献求助10
2分钟前
2分钟前
3分钟前
酷波er应助田柾国采纳,获得10
3分钟前
酷波er应助张子捷采纳,获得10
3分钟前
3分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813299
关于积分的说明 7899622
捐赠科研通 2472677
什么是DOI,文献DOI怎么找? 1316491
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142