An automatic inspection system for pest detection in granaries using YOLOv4

谷仓 象鼻虫 计算机科学 农业工程 有害生物分析 人工智能 工程类 农学 生物 地理 植物 考古
作者
Chao Chen,Yundong Liang,Le Zhou,Xiuying Tang,Mengchu Dai
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:201: 107302-107302 被引量:11
标识
DOI:10.1016/j.compag.2022.107302
摘要

Stored-grain pests cause serious economic losses during grain storage. Therefore, it is important for us to know the accurate number and species of stored grain pests as soon as possible so that appropriate measures can be taken to reduce economic losses. However, current research on grain pest detection has two problems. The background of the dataset does not contain any grain, so the results cannot be applied to detect pests in actual situations. The other problem is that methods based on pest traps cannot reflect situations on the surface of the whole granary. This paper proposes an automatic system of pest detection and counting to solve these problems. This system consists of two main parts: a deep learning object detection model called YOLOv4 and a small car with a camera and a supplementary light. And YOLOv4 model that has been trained is embedded in the car. The car can run on the surface of the granary. The camera on the small car can take photos of the pests for YOLOv4 to identify the species and number of pests. In the experiment, a few hundred kilograms of wheat were used to lay a simulated granary. And 2 typical stored-wheat pests, namely, the red flour beetle and the rice weevil, were taken as the research objects. The experimental results demonstrated that the mean average precision (mAP) of the proposed method reached 97.55%, which can meet the accuracy requirements of the detection and counting of pests in the granary in practical applications. The system solves the randomness and insufficient accuracy of pest traps and human eye recognition. And the system can be used to the early warning of pests in granary, which has high accuracy and completely release manual labor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lorin完成签到 ,获得积分10
2秒前
123发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
思山完成签到,获得积分20
9秒前
陈1992完成签到 ,获得积分10
10秒前
Robe发布了新的文献求助10
10秒前
七七发布了新的文献求助10
11秒前
简宁完成签到,获得积分10
11秒前
善学以致用应助hshsh采纳,获得10
14秒前
14秒前
CodeCraft应助Robe采纳,获得10
17秒前
20秒前
20秒前
开心发布了新的文献求助10
20秒前
尼铬完成签到,获得积分10
20秒前
娄医生发布了新的文献求助10
21秒前
22秒前
共享精神应助读书破万卷采纳,获得10
23秒前
25秒前
祖宁发布了新的文献求助10
25秒前
lsq发布了新的文献求助10
26秒前
天天完成签到,获得积分10
26秒前
26秒前
壮观的夏云完成签到,获得积分10
27秒前
27秒前
luyee发布了新的文献求助10
27秒前
hshsh发布了新的文献求助10
32秒前
hailiangzheng完成签到,获得积分10
34秒前
华仔应助陶弈衡采纳,获得10
37秒前
41秒前
Ygy完成签到,获得积分10
42秒前
42秒前
hellzhu完成签到,获得积分10
43秒前
46秒前
46秒前
49秒前
49秒前
心子吖完成签到,获得积分10
49秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161114
求助须知:如何正确求助?哪些是违规求助? 2812494
关于积分的说明 7895538
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315941
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602103