MARNet: Multi-head attention residual network for rolling bearing fault diagnosis under noisy condition

残余物 方位(导航) 断层(地质) 噪音(视频) 卷积(计算机科学) 块(置换群论) 计算机科学 故障检测与隔离 特征(语言学) 一般化 模式识别(心理学) 人工智能 控制理论(社会学) 地质学 人工神经网络 算法 数学 地震学 数学分析 语言学 哲学 几何学 控制(管理) 执行机构 图像(数学)
作者
Linfeng Deng,Guojun Wang,Cheng Zhao,Yuanwen Zhang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (19): 9726-9747
标识
DOI:10.1177/09544062241259614
摘要

Rolling bearings are crucial components of rotating machinery, and their health states directly affect the overall performance of the machinery. Therefore, it is exceedingly necessary to detect and diagnose bearing faults. Numerous bearing fault diagnosis methods have been successfully used for ensuring the safe operation of rotating machinery. However, in practical working environments, there is a considerable amount of noise, resulting in traditional methods incapable of achieving accurate fault diagnosis. This paper proposes a new multi-head attention residual network (MARNet) for rolling bearing fault diagnosis under noisy condition. MARNet optimizes residual units by simplifying multi-layer convolutions into a single-layer convolution and replaces the rectified linear unit (ReLU) function with the exponential linear unit (ELU) function to obtain a more appropriate activation function. Additionally, the multi-head attention mechanism is introduced into the residual block to capture correlation information between any two time sequences, enhancing the network’s feature extraction capability. The effectiveness and superiority of the MARNet in noisy environments are demonstrated through conducting the two bearing datasets from Case Western Reserve University (CWRU) and Paderborn University (PU). The experiment results show that the proposed method exhibits anti-noise characteristics and generalization capability compared with several up-to-date deep learning methods for fault diagnosis of rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小飞七应助jiangnan采纳,获得10
1秒前
1秒前
1秒前
独角兽完成签到 ,获得积分10
1秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
2秒前
Geng完成签到,获得积分10
3秒前
3秒前
宇_完成签到,获得积分20
3秒前
香蕉觅云应助NEMO采纳,获得10
3秒前
4秒前
4秒前
星辰大海应助247793325采纳,获得20
4秒前
4秒前
灵巧荆发布了新的文献求助10
4秒前
4秒前
haimianbaobao完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
SAW发布了新的文献求助10
7秒前
爆米花应助LiShin采纳,获得10
7秒前
Jasper应助jxcandice采纳,获得10
8秒前
8秒前
Owen应助雾见春采纳,获得10
9秒前
aiming发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
无辜之卉发布了新的文献求助10
11秒前
yty发布了新的文献求助10
11秒前
烟花应助卡夫卡没在海边采纳,获得10
12秒前
456发布了新的文献求助10
13秒前
传奇3应助温暖以蓝采纳,获得10
13秒前
辛勤的仰完成签到,获得积分10
13秒前
如意新晴完成签到,获得积分10
13秒前
13秒前
zrk完成签到,获得积分20
14秒前
14秒前
szmsnail发布了新的文献求助20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794