Triazine Ring-Enhanced Transient-State Self-Bipolarized Organic Frameworks for Natural Sunlight-Driven H2O2 Photosynthesis

三嗪 阳光 光化学 戒指(化学) 天然有机质 催化作用 光合作用 化学 瞬态(计算机编程) 材料科学 高分子化学 有机化学 光学 物理 有机质 计算机科学 生物化学 操作系统
作者
Wenjuan Zhang,Lizheng Chen,Juan Du,Zhuoyuan Ma,Kaikai Ba,Xuefeng Chu,Lei Wang,Tengfeng Xie,Dayang Wang,Gang Liu
出处
期刊:ACS Catalysis 卷期号:14 (15): 11713-11720
标识
DOI:10.1021/acscatal.4c02285
摘要

Organic photocatalysts offer exciting opportunities for the conversion of solar energy to storable chemical products. Their intricate spatial architecture, tailored with precision, affords a sophisticated level of control over the light absorption characteristics and the efficacious transport of charge carriers. Nonetheless, the state-of-the-art advancements in catalytic performance have predominantly stemmed from the strategic disruption and subsequent reconfiguration of the pre-existing conjugated matrix structures. In this work, we develop a molecular cocatalyst strategy based on our recently reported transient-state self-bipolarized frameworks to improve photocatalytic performance. It was demonstrated that introducing a triazine ring through covalent bonding or mechanic mixing could significantly enhance the performance of photocatalysts without disturbing the original frameworks. Under natural sunlight irradiation and using only water and air as raw materials, the generation rate of H2O2 can be increased by approximately 4.3 times. Comprehensive experimental characterizations, including surface photovoltage and in situ electron paramagnetic resonance, along with theoretical calculations demonstrated the cocatalytic nature of triazine rings. These rings effectively delocalize photoexcited electrons, promoting the reduction of adsorbed O2 and enhancing the production of H2O2. Notably, the strategic incorporation of a triazine ring within the catalyst matrix while leaving the underlying framework intact underscores the potential for this approach to be extrapolated to a broader spectrum of organic photocatalysts. This innovative tactic not only paves the way for enhanced catalytic performance but also exemplifies the versatility and adaptability of molecular design in the field of catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
日月轮回完成签到,获得积分20
1秒前
科研通AI2S应助mark2021采纳,获得10
1秒前
刘子子完成签到 ,获得积分10
2秒前
完美世界应助qin采纳,获得10
3秒前
紧张的寻冬完成签到 ,获得积分10
4秒前
呐殇完成签到,获得积分10
6秒前
小二郎应助美满朝雪采纳,获得30
6秒前
苏大强完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助华hgger采纳,获得10
8秒前
榆木完成签到 ,获得积分10
8秒前
孤独树叶发布了新的文献求助10
9秒前
呐殇发布了新的文献求助10
9秒前
yyyyxxxg发布了新的文献求助10
11秒前
14秒前
LHL发布了新的文献求助10
16秒前
天天快乐应助Hh采纳,获得10
16秒前
FF完成签到 ,获得积分10
17秒前
miemie完成签到,获得积分10
17秒前
科研通AI2S应助coli采纳,获得10
18秒前
Lucas应助黙宇循光采纳,获得10
19秒前
Akim应助ShangXuanyue采纳,获得10
19秒前
19秒前
Yingkun_Xu完成签到,获得积分10
19秒前
20秒前
小学生发布了新的文献求助10
21秒前
王大雨发布了新的文献求助10
21秒前
艾米发布了新的文献求助10
21秒前
CodeCraft应助英俊的胜采纳,获得10
21秒前
23秒前
24秒前
qs发布了新的文献求助10
25秒前
25秒前
25秒前
zz发布了新的文献求助10
26秒前
陳钧浩完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244