趋化性
信号(编程语言)
运动性
消费(社会学)
逻辑函数
环境科学
生物系统
计量经济学
经济
数学
生物
统计
计算机科学
细胞生物学
受体
社会学
生物化学
程序设计语言
社会科学
作者
Zheng Meng,Liangchen Wang
摘要
This paper deals with the chemotaxis system with signal-dependent motility and indirect signal consumption and logistic source$ \begin{eqnarray*} \left\{ \begin{array}{llll} u_t = \Delta ( u\gamma(v))+au-bu^l, \quad &x\in \Omega, t>0, \\ v_t = \Delta v - vw, \quad &x\in \Omega, t>0, \\ w_t = - \delta w + u, \quad &x\in \Omega, t>0, \end{array} \right. \end{eqnarray*} $under homogeneous Neumann boundary conditions in a smooth bounded domain $ \Omega\subset \mathbb{R}^n $ ($ n\geq1 $). Here the parameters $ \delta >0 $, $ a>0 $, $ b>0 $ and $ l>1 $, and the motility function $ \gamma \in {C^3}\left( {\left[ {0, + \infty } \right)} \right) $ is positive on $ [0, \infty) $. For all suitably regular initial data, if one of the following cases holds:(ⅰ) $ n \le 3, l > 1 $;(ⅱ) $ n \ge 4, l > 2 $;(ⅲ) $ n \ge 4, l = 2 $ and $ b $ is sufficiently large,then the corresponding initial boundary value problem possesses global bounded classical solutions. Our goal extends the global solution result by Li et al. [19] with sufficiently large values of $ l > \max \{ 1, \frac{n}{2}\} $.
科研通智能强力驱动
Strongly Powered by AbleSci AI