Survival prediction in sigmoid-Colon-cancer patients with liver metastasis: a prospective cohort study

医学 列线图 内科学 比例危险模型 结直肠癌 肿瘤科 转移 一致性 阶段(地层学) 流行病学 T级 队列 癌症 古生物学 生物
作者
Shuai Shao,Dan Tian,Mingyang Li,Shanshan Wu,David Zhang
出处
期刊:JNCI Cancer Spectrum [Oxford University Press]
标识
DOI:10.1093/jncics/pkae080
摘要

Abstract Purpose Sigmoid colon cancer (SCC) is a common type of colorectal cancer, frequently leading to liver metastasis. Predicting cause-specific survival (CSS) and overall survival (OS) in SCC with liver metastasis (SCCLM) patients is challenging due to the lack of suitable models. Methods Data from SCCLM patients (2010-2017) in the Surveillance, Epidemiology, and End Results (SEER) Program were recruited. Patients were split into training and validation groups (7:3). Prognostic factors were identified using competing risk and Cox proportional hazards models, and nomograms for CSS and OS were developed. Model performance was evaluated with the concordance index and calibration curves, with a two-sided p < .05 was considered statistically significant. Results 4,981 SCCLM patients were included, with a median follow-up of 20 months (IQR: 9-33 months). During follow-up, 72.25% of patients died (68.44% from SCC, 3.81% from other causes). Age, race, grade, T stage, N stage, surgery, chemotherapy, CEA, tumor deposits, lung metastasis, and tumor size were prognostic factors for both CSS and OS. The models demonstrated good discrimination and calibration performance, with C-index values of 0.79 (95% CI: 0.78-0.80) for CSS and 0.74 (95% CI: 0.73-0.75) for OS. A web-based application for real-time CSS predictions was created, accessible at https://shuaishao.shinyapps.io/SCCLM/. Conclusion Prognostic factors for SCCLM patients were identified basing on SEER database, and nomograms for CSS and OS showed good performance. A web-based application was developed to predict SCCLM-specific survival, aiding in survival risk stratification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助linhi采纳,获得10
刚刚
1秒前
脑洞疼应助王喂喂哦啊嗯采纳,获得10
1秒前
ghtsmile发布了新的文献求助10
1秒前
我是老大应助chself采纳,获得10
1秒前
stargazer完成签到,获得积分10
1秒前
cyx30303完成签到 ,获得积分10
2秒前
天天快乐应助徐瑶瑶采纳,获得10
2秒前
WT发布了新的文献求助30
2秒前
3秒前
轻松雪旋发布了新的文献求助10
3秒前
尽平梅愿发布了新的文献求助10
4秒前
4秒前
富兰克林发布了新的文献求助10
4秒前
Dong发布了新的文献求助10
5秒前
黑宝坨发布了新的文献求助10
5秒前
5秒前
tuanheqi应助栗子的小母牛采纳,获得50
6秒前
6秒前
孝顺的落雁完成签到,获得积分10
7秒前
7秒前
顾矜应助罗向南采纳,获得10
8秒前
刻苦的淇发布了新的文献求助10
8秒前
毕业biye发布了新的文献求助10
9秒前
nuo发布了新的文献求助10
9秒前
少熬夜发布了新的文献求助10
10秒前
宇文青寒完成签到,获得积分10
10秒前
Hubert发布了新的文献求助10
10秒前
及尔完成签到,获得积分10
10秒前
11秒前
CHENGJIAO发布了新的文献求助10
12秒前
隐形曼青应助夕瑶摇啊采纳,获得10
12秒前
li完成签到,获得积分10
12秒前
研友_VZG7GZ应助nuo采纳,获得10
12秒前
15秒前
Akim应助Dragon3rd采纳,获得10
15秒前
16秒前
元复天发布了新的文献求助10
17秒前
ghtsmile完成签到,获得积分10
18秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310576
求助须知:如何正确求助?哪些是违规求助? 2943398
关于积分的说明 8514677
捐赠科研通 2618712
什么是DOI,文献DOI怎么找? 1431344
科研通“疑难数据库(出版商)”最低求助积分说明 664461
邀请新用户注册赠送积分活动 649626