MXenes公司
最大相位
材料科学
化学物理
空位缺陷
相(物质)
碱金属
相变
碳化物
纳米技术
化学
结晶学
热力学
物理
复合材料
有机化学
作者
Brian C. Wyatt,Matthew G. Boebinger,Zachary D. Hood,Shiba P. Adhikari,Paweł Piotr Michałowski,Srinivasa Kartik Nemani,Murali Gopal Muraleedharan,Annabelle Bedford,Wyatt J. Highland,Paul R. C. Kent,Raymond R. Unocic,Babak Anasori
标识
DOI:10.1038/s41467-024-50713-2
摘要
Transition metal carbides have been adopted in energy storage, conversion, and extreme environment applications. Advancements in their 2D counterparts, known as MXenes, enable the design of unique structures at the ~1 nm thickness scale. Alkali cations have been essential in MXenes manufacturing processing, storage, and applications, however, exact interactions of these cations with MXenes are not fully understood. In this study, using Ti3C2Tx, Mo2TiC2Tx, and Mo2Ti2C3Tx MXenes, we present how transition metal vacancy sites are occupied by alkali cations, and their effect on MXene structure stabilization to control MXene's phase transition. We examine this behavior using in situ high-temperature x-ray diffraction and scanning transmission electron microscopy, ex situ techniques such as atomic-layer resolution secondary ion mass spectrometry, and density functional theory simulations. In MXenes, this represents an advance in fundamentals of cation interactions on their 2D basal planes for MXenes stabilization and applications. Broadly, this study demonstrates a potential new tool for ideal phase-property relationships of ceramics at the atomic scale. The effect of defects on MXene structural transitions in high-temperature environments is shown. Further, defect occupied alkali cations are shown to improve MXenes' phase stability and control surface diffusion related phase changes.
科研通智能强力驱动
Strongly Powered by AbleSci AI